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Abstract

We provide a framework for optimizing the distribution of policy treatment by combining machine
learning techniques for the estimation of individualized causal responses with sufficient statistics for
relative welfare implications of alternative distributions. This framework is applied to the setting of
audit policy optimization in Pakistan. Specifically, we define a model which derives the Marginal Value
of Public Funds (MVPF) in terms of three estimable causal effects of individuals in response to an audit:
the net-present value of long-run tax liabilities, taxpayer burden from audit compliance, and government
expenditures from the audit. With the universe of individual income tax returns in Pakistan from 2012
– 2020, we employ generalized random forests to estimate the individualized causal effects and optimize
the distribution of audits with stochastic gradient descent and genetic algorithms. We find that the
welfare cost per-dollar of revenue raised can be reduced by between 40% – 57% while collecting even
more revenue than under the observed policy.

1 Introduction

Public economics has long been concerned with the relative welfare impacts of alternative policies. This
has led to the popularity of cleverly formulated structural welfare models from which we can derive sufficient
statistics out of model primitives. Some popular examples of such sufficient statistics include the Marginal
Excess Burden (e.g. Eissa et al. (2008); Eissa and Hoynes (2011)), Net Social Benefit (Olken, 2007), and
the Benefit-Cost Ratio (e.g. Heckman et al. (2010)). The most recent advancement in this literature, the
Marginal Value of Public Funds (MVPF) (e.g. Mayshar (1990); Slemrod and Yitzhaki (1996); Hendren
(2016); Hendren and Sprung-Keyser (2020)), extends the work of these previous approaches by formulating
a sufficient statistic in terms of empirically estimable causal effects. In many cases this provides a major
advantage over sufficient statistics which rely on abstract Hicksian elasticities that may be difficult to identify
in practice.

To this point, the MVPF has generally been used for a single purpose: to compare the relative welfare
impacts across policy domains using average causal effects to derive the MVPF itself. That is, economists
have aimed to answer the question of “how much should we spend on policy A vs. policy B?” when policy
A might be a marginal tax rate reform and policy B might be an expenditure program like school vouchers,
unemployment insurance, etc. (e.g. Bergstrom et al. (2024)). Meanwhile, the field of econometrics has
recently exploded with advances in methods to estimate heterogeneous causal effects with non-parametric
machine learning (e.g. Wager and Athey (2018), Athey et al. (2019)). This potentially opens the door for
another important question of policy optimization: “who should be treated under a fixed budget to maximize
the social welfare impact of the policy itself?”

In this paper, we provide a framework for deriving the optimal distribution of treatment for empiri-
cal welfare maximization with the MVPF as the guiding objective function. The framework is developed
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through the use-case of audit policy in Pakistan. It is well-established that tax evasion rates are high in
developing economies for a variety of reasons including (but not limited to) a pervasive informal sector and
small budgets for enforcement (Jensen, 2022). Developing economies collect between 10-20% of their GDP
in taxes, as opposed to their OECD counterparts which collect around 40% on-average (Besley and Persson,
2014), despite having similar marginal tax rates on income. Economists have posited for some time that
a lack of tax enforcement capabilities is a significant barrier to economic development, stated as early as
Kaldor (1963), “It is the shortage of resources, not adequate incentives, which limits the pace of economic
development.” This remains an issue today, as evidenced by a recent IMF policy briefing (Benitez et al.,
2023) which claims “...developing countries have made some progress in revenue mobilization during the past
decades... however, much more is needed,” and by a recent World Bank report (Dom et al., 2022) which
states that, “In many developing countries, tax revenues remain far below levels needed to provide citizens
with basic services or fund extra spending to minimize the impact of COVID-19.”

Given the high rates of tax evasion and the limited audit budgets we observe in developing economies, it
becomes especially critical to optimally select the audit population. In the case of Pakistan, 80% of audited
firms were found to be evading over a 3-year period where audits were completely randomized among all
firms in the country (Farooq, 2024). The hypothesis of this paper becomes clear in light of this empirical fact:
if nearly everybody is evading, then determining audit policy based only on the likelihood of evasion is not
useful. Rather, audit policy should be determined optimally based on the expected welfare cost of that policy.

Using administrative data from Pakistan which covers the universe of individual income tax returns and
audits from 2012 – 2020, we apply new developments in causal machine learning techniques (Wager and
Athey (2018), Athey et al. (2019)) which allow us to estimate the causal response functions of individuals to
audits using observables. With this mapping, we derive optimal targeting schemes which seek to minimize
preference-weighted MVPFs, which is equivalent to minimizing the welfare cost per-dollar of government
revenue raised from audits.

We begin our analysis by deriving a simple structural model which identifies the relevant treatment ef-
fects that together allow the derivation of MVPFs as a function of the treatment distribution. By estimating
these treatment effects at the individual level, and by making some assumptions on the nature of the govern-
ment’s redistribution preferences, these MVPFs serve as sufficient statistics to compare the relative welfare
impacts of alternative treatment distributions. We establish three causal effects that are necessary to derive
our MVPF. (1) The net present value (NPV) of future tax revenue streams, which accounts for both the
uncertain revenue recoup from an audit and all other changes in future economic behavior resulting from
the audit – e.g. deterrence, future business profits1, etc. (2) The expected marginal cost to the government
from an audit of any given individual. (3) The expected costs accrued to the taxpayer from having to comply
with the audit process – e.g. hiring accountants/lawyers, time waste from having to provide documentation
to assessors, etc.

Next, we outline our procedure to estimate these individualized treatment effects with causal machine
learning methods. Specifically, we leverage a year where, by happenstance, all federal audits in Pakistan
were conducted completely at-random. This allows us to apply generalized random forests to estimate in-
dividualized treatment effects and apply them to the universe of tax returns in the following year. With
these individualized treatment effect predictions, we use versions of stochastic gradient descent and genetic
algorithms to derive empirically optimal policies. We consider four policy objectives the government may
reasonably seek to pursue: (1a) minimize the social cost per-dollar of revenue raised (i.e. the MVPF) sub-
ject to a minimum revenue recoup threshold, (1b) minimize the MVPF subject to both a revenue recoup
minimum and a maximum audit expenditure budget, (2a) maximize the NPV of revenue recouped subject
to a maximum MVPF threshold, (2b) maximize the NPV of revenue recouped subject to both a maximum
MVPF constraint and a maximum audit expenditure constraint. Finally, we compare the social costs and
revenues/expenditures of the optimal predicted policies to the observed policy, and conduct several tests to
provide evidence for the validity of these counterfactual policy gains.

1It has been documented in developing economies that enforcing statutory tax rates may drive some firms to the informal
sector as some economic activities will not be profitable under statutory rates.
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We find large expected reductions to the welfare cost per-dollar of revenue recoup and equally large
expected gains to the revenue recoup amounts themselves under each policy objective from our optimal
derived policies relative to the observed audit distribution in 2017. For policy goals 1a and 1b, we predict a
reduction in the MVPF (which in this case corresponds to a reduction in the social cost of revenue recouped)
by 40% – 57% at no cost to aggregate revenue recoup (in fact, we observe large gains to revenue recouped).
For policy goals 2a and 2b, we estimate that revenue recoup can be more than doubled while maintaining
the same social cost as under the observed policy.

2 Theory

We begin with a general model which motivates the MVPF framework in the setting of audit policy,
keeping in mind earlier and current work on optimal tax enforcement (Keen and Slemrod, 2017) and audit
MVPFs (Boning et al., 2023). The purpose of this model is to establish the MVPF as a theoretical benchmark
(a sufficient statistic, of sorts2) from which we may directly compare the relative efficiencies of audit schemes
that target various population subsets, allowing flexibly for a variety of welfare preferences to enter.

2.1 A General Welfare Model in an Audit Setting

We observe individuals indexed i ∈ I over t ∈ T periods, who have utility functions over generic con-
sumption, cit, and declared income, yit. Earnings are taxed according to a liability function, T (yit), but
individuals may choose to evade eit dollars of income taxes such that their consumption in period t is given
by cit = yit − T (yit) + eit if individual i is not audited. In order to allow for the dynamic impact of audits
on behavior, denote αit = (at, ..., at+k) as a vector of audit-year indicators where at = 1 if the individual
was audited in period t. Also denote a penalty function, ϕ(eit), that represents the additional amount paid
by the individual over-and-above their evasion amount if they are audited which is an increasing function
of their evasion amount, such that if the individual is caught evading, they will pay [ϕ(eit) + eit] to the
enforcement agency.

Individuals seek to maximize their expected present discounted value of utility by selecting income yit
and an evasion amount eit in each period within their utility function:

max
yit,eit

E

[
T∑
t

βt−1 (cit − ψ(yit)−Bi · at)

]
(1.1)

s.t. cit = yit + eit − T (yit) if at = 0

cit = yit − ϕ(eit)− T (yit) if at = 1

Where per-period utility is assumed to be given by the quasi-linear function, u(cit, yit) = cit−ψ(yit)−Bi ·at.
Disutility of labor is given by the function ψ(yit), and taxpayer disutility of being audited (also can be inter-
preted as the marginal taxpayer burden of an audit) is given as Bi. Where the expectation comes from the
probability of being audited (at = 1) in each period, denoted pit(Xit) = Pr{at = 1}, and is a function of
observable individual i characteristics, Xit, which may include (but not limited to) past audit history and
current/past income tax return information.

Because income, yit, enters additively here, we can focus solely on the individual’s evasion decision as
the two choices are independent (i.e. the choice of labor earnings is not influenced by the choice of evasion
amount). Plugging the constraints into the objective function yields:

max
eit

∑
t

βt−1
[
pit
(
yit − ϕ(eit)− T (yit)− ψ(yit)−Bi

)
+ (1− pit)

(
yit + eit − T (yit)− ψ(yit)

)]
(1.2)

2The MVPF is, of course, only sufficient unless we are willing to make assumptions about social welfare preferences, of which
we will explore a variety.
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The optimal evasion amount in each period, e∗it, will ignore all terms where eit does not enter, and therefore
will solve in each period:

max
eit

(1− pit)eit − pitϕ(eit) (1.3)

The solution follows as the general result of first-order conditions for quasi-linear utility:

(1− pit) = pit
∂ϕ(eit)

∂eit
=⇒ e∗it =

(∂ϕ(eit)
∂eit

)−1(1− pit
pit

)
(1.4)

Plugging the optimal evasion amount into the objective function yields the expected indirect utility
function (i.e. maximum value function of utility) in period t, ex-ante:

Vi

(
pit, ϕ(e

∗
it), T (y

∗
it)
)
= E

[∑
t

βt−1
(
y∗it − ψ(y∗it)− T (y∗it) + e∗it − at(e

∗
it + ϕ(e∗it) +Bi)

)]
=
∑
t

βt−1Pr{αit}
(
y∗it − ψ(y∗it)− T (y∗it) + e∗it − pit(e

∗
it + ϕ(e∗it) +Bi)

) (1.5)

Where Pr{αit} is the probability of a particular sequence of future audits.

2.1.1 Willingness to Pay for an Audit Reallocation

What is the welfare impact of changing the probability of audits at the individual-level? It is helpful to
first consider the impact of a general exogenous increase in the audit probability before considering hypo-
thetical budget-neutral reallocations (i.e. increasing the probability of auditing some financed by decreasing
the probability of auditing others), as in Boning et al. (2023). Let’s consider a uniform increase in the audit
probability for type-i individuals in the first period, dpi1. Individuals are willing to pay the value of their
compensating variation to avoid an audit: the amount of money from their own income such that their
utility is equated between the event of an audit vs. no audit. This is well-established to be equivalent to
dVi

dpi1
. The individual’s indirect utility in this period is given by:

Vi = pi1[y
∗
i1 − ψ(y∗i1)− T (y∗i1)− ϕ(e∗i1)−Bi + βV 1

i︸ ︷︷ ︸
Utility if audited

] + (1− pi1)[y
∗
i1 − ψ(y∗i1)− T (y∗i1) + e∗i1 + βV 0

i︸ ︷︷ ︸
Utility if not audited

] (1.6)

Where V 1
i and V 0

i are the net-present-values (NPVs) of utility in subsequent periods if the individual is
audited or not in period 1. The envelope conditions tell us that the behavioral responses to the change in

audit probability (
dy∗

i1

dpi1
and

de∗i1
dpi1

) will not enter the derivative of the indirect utility function with respect to
the audit probability, leaving us with the following:

dVi
dpi1

= y∗i1 − ψ(y∗i1)− T (y∗i1)− ϕ(e∗i1)−Bi + βV 1
i − y∗i1 + ψ(y∗i1) + T (y∗i1)− e∗i1 − βV 0

i

= −ϕ(e∗i1)− e∗i1 −Bi + βV 1
i − βV 0

i

= −
[

ϕ(e∗i1) + e∗i1︸ ︷︷ ︸
Mechanical (short run)
impact on gov’t revenue

+ β(V 0
i − V 1

i )︸ ︷︷ ︸
NPV of long run
gov’t revenue

+Bi

] (1.7)

The first term, ϕ(e∗i1) + e∗i1, is the immediate tax revenue increase from an audit of individual i, and the
second term β(V 0

i −V 1
i ) represents the NPV of what we broadly refer to as the “deterrence effect” – i.e. the

behavioral response to an audit on future tax revenue.3 Therefore, individual i is willing to pay the sum of
this immediate revenue impact (denote as Rimmediate), the NPV of the difference in their future tax revenue
streams (denote as Rfuture), and the value of their audit burden (e.g. value of their time filing paperwork,
expenses paid to attorneys or accountants, etc.), Bi, to avoid an audit. This outlines the set of causal effects
one must estimate for individual i in order to identify their willingness to pay to avoid dpi1:

WTPi = − dVi
dpi1

= Rimmediate
i +Rfuture

i +Bi (1.8)

3It is key to note that there are potentially many factors outside of “deterrence” which may impact this value. For example,
an individual’s business my shut down if they are audited, which may lower income and therefore future tax revenue. In such
an event, the ”WTP to avoid an audit” falls.
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2.1.2 Government Net Costs and the MVPF

The second component of the MVPF as outlined by Hendren (2016), Hendren and Sprung-Keyser (2020),
and several others, is the NPV of net program costs to the government. In the case of audit policy, government
revenue is affected by 4 sources: (1) collected tax revenue from declared income, (2) evasion amounts, (3)
tax revenue recouped from audits, and (4) the marginal costs of audits. Let Gi denote the expected NPV of
government revenue from individual i:

Gi =
∑
t

βt−1E
[
T (y∗it) + ait

(
e∗it + ϕ(e∗it)− Ci

)]
(1.9)

Where Ci is the marginal cost of auditing person i. Again, the expectation operator is with respect to the
probability of auditing person i, where ait ∈ {0, 1} according to this conditional probability.

In a similar manner to the taxpayer’s problem, let’s expand the first period NPV of government revenue
from person i, then assess the impact of a change in audit probability in the first period. Let’s first note

that we cannot apply the envelope theorem here as the behavioral responses,
de∗it
dpi1

and
dy∗

it

dpi1
, have first-order

impacts on government revenue. However, in the first period, the change in audit probability is unknown to
the taxpayer. So, by definition, they will have no behavioral response in the first period, though it is worth
noting that these responses are the key causal effects driving “deterrence” and are thus part of G1 and G0.
Differentiating therefore gives us the following, where G1 −G0 is equivalent to V 0 − V 1 as both are simply
the NPV of the additional taxes paid under a state of audit vs. a state of no audit (to see this, note that Bi

is not a factor outside of period 1, which means that the only relevant component of V and G is Ri under
each possible state):

Gi = pi1[T (y
∗
i1) + e∗i1 + ϕ(e∗i1)− Ci + βG1] + (1− pi1)[T (y

∗
i1) + βG0] (1.10)

dGi

dpi1
= T (y∗i1) + pi1T

′(y∗i1)
dy∗i1
dpi1︸︷︷︸
=0

+e∗i1 + pi1
de∗i1
dpi1︸︷︷︸
=0

+ϕ(e∗i1) + pi1ϕ
′(e∗i1)

de∗i1
dpi1︸︷︷︸
=0

−Ci + βG1

+ T ′(y∗i1)
dy∗i1
dpi1︸︷︷︸
=0

−T (y∗i1)− pi1T
′(y∗i1)

dy∗i1
dpi1︸︷︷︸
=0

−βG0

= ϕ(e∗i1) + e∗i1︸ ︷︷ ︸
Mechanical (short run)
impact on gov’t revenue

+ β(G1 −G0)︸ ︷︷ ︸
NPV of long run
gov’t revenue

−Ci

(1.11)

Let Ri = Rimmediate
i + Rfuture

i = ϕ(e∗i1) + e∗i1 + β(G1 − G0), which is the total impact on government
revenue (immediate revenue recoup + long-run “deterrence” effect) from an audit of person i, before costs.
The MVPF of any particular audit distribution within the set of all possible audit distributions (Ap ∈ A) is
given by 4:

MV PFAp =

∑
i∈Ap

(Ri +Bi)∑
i∈Ap

(Ri − Ci)
=

∑
i∈Ap

(Ri

Ci
+ Bi

Ci
)∑

i∈Ap
(Ri

Ci
− 1)

=
Total WTP to Avoid an Audit

Gov’t revenue recoup – Gov’t costs
(1.12)

2.1.3 Using MVPFs to Compare Policies

Equation 1.12 allows for heterogeneity in behavioral responses and marginal costs across the population
to impact the value of the MVPF depending on which taxpayers the government chooses to audit. In prin-
cipal, if one could identify individualized values of R, C, and B, then one could seek to optimize the MVPF

4The numerator here technically represents the WTP to avoid dpi1, which is to say they are willing to pay
∑

i(Ri +Bi) to
avoid an increase in their audit probability by dpi1. A possible issue for further examination is, since dpi1 is likely not marginal
when considering the selection of audits (i.e. increasing the probability of an audit from pi0 to 1), the numerator may poorly
approximate the true WTP to avoid an audit.

5



by carefully selecting audits. In this case, the MVPF represents the total welfare cost imposed on taxpayers
for each $1 of revenue raised by the government. Thus, a lower MVPF is better: for example, an MVPF
of 1.13 would indicate that each $1 of revenue recouped by the government imposes a $1.13 welfare cost on
taxpayers. Similarly, an MVPF = 1 would indicate a non-distortionary audit policy. Note that negative
MVPFs do not indicate better policies as they normally would in cases where program recipients benefit
positively from treatment (for example, a policy recovering $1 in revenue with substantial government costs
would yield a negative MVPF), and MVPFs between 0 and 1 are also poor policies as they are only mathe-
matically possible when

∑
iRi is negative (assuming Bi is always positive), which indicates the audit scheme

generates less long run revenue to the government than if the government had forgone an audit program
entirely. Therefore, the optimal policy would produce an MVPF closest to 1 among the set of policies where
MV PFAp

≥ 1, and going forward we will only consider this set of policies.

However, a direct comparison of raw MVPFs is not sufficient to make claims about the relative welfare im-
pacts of each alternative policy unless we are willing to assume Utilitarian social welfare preferences5. While
such an exercise is a useful starting point, economists are typically not willing to make such an assumption
as uniform Pareto weights do not account for income inequality aversion or subjective redistribution prefer-
ences. Hendren and Sprung-Keyser (2020) – and many others – define the “social marginal utility of income”
for person i, denoted ηi, as the marginal increase (decrease) in social welfare when endowing (taxing away
from) person i an additional $1 of income. To briefly illustrate, consider a social welfare function that is a
weighted average of individual utilities: W =

∫
i
γiVi di, where γi is individual i’s Pareto weight – i.e. the

marginal increase in W for each additional util given to person i. If the marginal utility of income from
person i is given by ∂Vi

∂yi
= λi, then the social marginal utility of income is how much society values giving

that additional $1 to person i, which will be γiλi = ηi.

In general, when comparing any two policies using their MVPFs in a hypothetical budget-neutral scheme
where an increase in spending on policy 1 is financed by an equivalent decrease in spending on policy 2, it
is straightforward to show that policy 1 is preferred to policy 2 iff:6

η̄1MV PF1 < η̄2MV PF2 =⇒ η̄1
η̄2

<
MV PF2

MV PF1
(1.13)

That is, the MVPF of policy 1, weighted by the average social marginal utility of policy 1’s beneficiaries, must
be less than the same measure for policy 2 in order to conclude that policy 1 is “better” for social welfare
as this implies that the preference-weighted welfare cost per-dollar of revenue raised is smaller in policy 1.
Therefore, an empirical approach which calculates and compares MVPFs must consider alternative sets of
welfare preferences, as MVPFs can only be compared empirically if one assigns a welfare weight to the set
of audited individuals. In Section 4.3, we will outline our empirical approach for the consideration of welfare
preferences, which amounts to defining a scaling function of tax revenue (and burden) along the income
margin such that $1 of revenue (burden) collected from poorer individuals counts less (more) towards the
MVPF than wealthier individuals. The degree of inequality aversion is controlled by a concavity parameter
which determines how much less (more) this $1 of revenue (burden) counts towards the MVPF.

3 Data: Pakistan’s Audit Program

We observe the universe of individual tax returns in Pakistan from 2012 – 2020. This includes the full
panel of tax returns for approximately 2.8 million individuals, including approximately 31,000 each year who
were audited. Our data contain all covariate information within tax returns such as income sources, declared
deductions and withholdings, filing dates, etc. We also observe detailed information on audits themselves
from 2014 – 2020. This includes a comprehensive list of audited individuals, associated audit dates, and tax
recoup amounts.

5It’s not sufficient because the welfare costs are concentrated on the treated population (i.e. the audited folks). So, we care
about not just how much of a cost that is being imposed, but also who we are imposing that cost on.

6Note that in the case where the policy is beneficial to recipients (as opposed to here where it is harmful to those treated),
this inequality is reversed as larger preference-weighted MVPFs are better.
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Regarding costs to the tax agency, our information is less granular, though it remains sufficient (in our
opinion) to get decent per-audit cost estimates. We observe tax office-level annual costs along with the
individuals who were audited in that year. These data contain fairly detailed information of office-level
expenditures: wages paid to assessors and hourly rates, various overhead items, etc. – the limitation being
that we cannot directly match expenditures to individual audits. For our first draft of results, we assume the
per-audit cost of an individual is equal to the average cost of audits within the tax office they were assigned.
To estimate the average cost of audits for a given office × year, we refer to qualitative accounts for about how
much of each budgetary line item could be reasonably attributed to audit. For instance, approximately 1/2
of an auditor’s time is spent actually conducting audits, so we attribute the average cost of labor to be 1/2
the annual wages paid to assessors. We also include the costs of computer equipment and office supplies in
our estimate. In future drafts, we aim to refine this estimate with further information from domain experts
in the Federal Board of Revenue regarding approximate time to complete different audits, which assessors
would be assigned to which audit, what overhead items would be employed by different audits, etc.

Taxpayer burden is interpreted as the cost of time and effort (in dollars) imposed on the taxpayer by
means of producing paperwork or other documents related to the audit itself, hiring lawyers and/or ac-
countants, or any other monetary expenses associated with complying to the audit itself. This value is
not observable in our data, and will likely vary primarily according to how imposing the assessor is on the
taxpayer. For now, we translate estimates from a survey conducted in the US by Guyton and Ii (2021) to
real Pakistani Rupees (PKR). They estimate an average taxpayer burden on audited individuals of $3,198,
which equates to about 520,085 PKR in 2021. They also estimate a regression akin to Bi = α + γ′Xi + ϵ,
where Xi is a vector of survey variables. They estimated a coefficient on log(income) to be 0.18, indicating
the total burden increases by 0.18% on-average with a 1% increase in income. We extrapolate this estimate
across the income distribution to generate (very moderate) heterogeneity in taxpayer burden estimates as
a function of income. We also follow the approach taken by Boning et al. (2023), who also refer to this
survey. They estimated an average B/C ratio of $0.50, and chose to hold this constant for all individuals.
That is, for an individual with an estimated audit cost of $1,000, they impose a burden estimate of $500.
The idea is that most of the heterogeneity in taxpayer burden will come from the degree to which the au-
ditor himself imposes it. In our case, the average cost to conduct an audit is XXXXX PKR. Dividing the
520,085 PKR estimate for average burden by this value yields a B/C ratio of VVVVVV. We also keep this ra-
tio constant across the distribution of costs in order to generate most of the heterogeneity in taxpayer burden.

Before 2011, tax enforcement in Pakistan was decentralized: Federal Board of Revenue (FBR) offices
determined audit cases independently. However, post 2011, the government began rolling out a centralized
auditing program where audits were determined based on a randomized or semi-randomized lottery. Figure
1 depicts a timeline for each of the three types of audit schemes implemented by the FBR over this 8-year
period. Specifically, from 2012 – 2014, and again in 2016, audits were conducted completely at-random
among the full universe of taxpayers. From 2015 – 2018, excluding 2016, audits were randomized among an
eligible sample of taxpayers classified as “likely evaders.” The methodology of this classification is proprietary
information to the FBR, yet certain covariates are considered “flags” and are published on their website7.
Finally, from 2018 – 2020, audits were randomized among an eligible sample of taxpayers classified as
“noncompliant.” Again, the exact methodology for this classification is not available, but noncompliance
flags include violations of tax return filing rules – e.g. late returns, improper declarations, etc. In all cases
we observe the full list of audited taxpayers as well as those taxpayers that were eligible but not audited.

7https://www.fbr.gov.pk/categ/audit-policy/126
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Figure 1: Timeline of FBR’s Audit Policy

Notes: Figure comes from Farooq (2024). This depicts the 8 years of natural experiments in audit policy in Pakistan from
tax year 2012-2018. During this time Pakistan varied audit eligibility policies between full eligibility, in which all firms are
eligible; parametric eligibility, in which only evasive firms are targeted and eligible; and risk-based eligibility, in which only
non-compliant firms are targeted and eligible.

4 Machine Learning Conditional Average Treatment Effects and
Policy Optimization

This section will discuss our empirical approach to estimating individualized treatment effects and using
those individualized treatment effects to derive an optimal policy according to various policy objectives.
Section 4.1 will briefly highlight how the randomization of audits in 2016 allows us to create identifying
equations for the average impact of an audit on (1) Ri: the NPV of current and future tax revenue, (2)
Ci: the marginal costs to the government from the audit, and (3) Bi: the taxpayer burden. Section 4.2
then discusses how we can generalize these identifying equations and apply generalized random forests to
estimate individualized taxpayer treatment effects along R, C, and B. Finally, in Section 4.3 we discuss
how we apply stochastic gradient descent and genetic algorithms to solve the high dimensional non-linear
optimization problems that we propose as policy objectives.

4.1 Identification of MVPF components

The randomized audit schemes from 2012 – 2014 and 2016 provide experimental variation in audit
exposure across the distribution of Pakistani taxpayers. Let us first discuss how one should construct and
estimate an average treatment effect of audits on Ri. Consider an audit of taxpayer i in the year 2016. If
we wanted to estimate the average “deterrence” effect, we could estimate a difference-in-differences with the
average change in NPV tax revenues from 2017 vs. 2016 among audited vs. non-audited individuals. Recall
that the effect on tax revenue in the current period from an audit is simply the revenue recoup: ϕ(e∗i1)+ e∗i1.
In subsequent periods, the difference in tax revenue from an audit is the difference in declared tax liability
(denote as Yit) over time. This suggests the construction of a variable representing the total NPV of the
change in tax revenue over time for individual i, where β is again the exogenous discount rate which we
assume in all cases to be 3%: Rchange

i,2016 = ϕ(e∗i1) + e∗i1 + β(Yi,2017 − Yi,2016) + β2(Yi,2018 − Yi,2016) + ... +

βk(Yi,2016+k − Yi,2016). The average treatment effect of an audit on the NPV of total tax revenue would be
identified as τ in the following regression, denoting Wit as the indicator for if individual i was audited in
period t:

Rchange
i,2016 = α+ τWit + γ′Xit + εit (2.1)

Where Xit is a vector of (optional – in the case of Equation 2.1) individual controls. However, in our
application, we do not seek the average impact, τ , but rather we seek the conditional average treatment
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effect (CATE) function which can be expressed as τ(Xit) in the following relaxation of equation 2.1:

Rchange
i,2016 = α+ τ(Xit)Wit + f(Xit) + εit (2.2)

Where τ(Xit) = Ri from Equation 1.12 and f(Xit) is now a flexible function of the covariates. The
remaining components of Equation 1.12, Ci and Bi, are actually much simpler to construct because they
amount to predictions of conditional mean functions under treatment. That is, where Ri = E[Rchange

i,t |Wi,t =

1,Xi,t]− E[Rchange
i,t |Wi,t = 0,Xi,t], the equivalent expressions for Ci and Bi are simply:

Ci = E[Cchange
i,t |Wi,t = 1,Xi,t]− E[Cchange

i,t |Wi,t = 0,Xi,t]

= E[Cchange
i,t |Wi,t = 1,Xi,t]− 0

= E[Ci,t|Wi,t = 1,Xi,t]

Bi = E[Bchange
i,t |Wi,t = 1,Xi,t]− E[Bchange

i,t |Wi,t = 0,Xi,t]

= E[Bchange
i,t |Wi,t = 1,Xi,t]− 0

= E[Bi,t|Wi,t = 1,Xi,t]

Where Cchange
i,t and Bchange

i,t are only non-zero in the current period, so the “change” superscript is un-
necessary. Again, τ(Xit) = Ci in the case of the cost outcome and τ(Xit) = Bi in the case of the burden
outcome. These individualized treatment effect estimates can be used in conjunction with 1.12 to evaluate
the social costs of alternative audit distributions.

A few notes are worth mentioning regarding our practical estimation of Equations 2.1 and 2.2. First,
because we only observe the distribution of audits in 2016 (of the years where audits were randomized),
we estimate CATE functions with only 2016 audits. We consider three years of prior tax returns plus the
2016 return as covariates within Xit, and we consider three years of future revenue plus 2016 to construct
Rchange

i,t . This is simply due to the fact that we only observe returns up to 2020, so three is the maximum
number of years we observe on the first out-of-bag year (2017). This is so that we may evaluate the quality
of CATE function predictions on as much observed data as possible. Nonetheless, our estimates of long-run
revenue impacts are understated if deterrence persists longer than three years. Prior work has generally
found deterrence to be persistent nearly indefinitely (e.g. DeBacker et al. (2018); Boning et al. (2023)). The
consequences of this understatement could be substantive for determinance of the optimal audit allocation
in two ways. First, by understating the impact of an audit on long-run tax revenue, the optimal policy will
mechanically favor (relatively) auditing individuals with a larger initial recoup prediction over those with
possibly larger deterrence effects. If the government’s discount rate on future tax revenue is sufficiently low,
this could lead to a sub-optimal audit allocation relative to the government’s preferences. However, if one is
willing to extrapolate the 3-year post-audit deterrence effect to T future periods, as prior work would suggest
is reasonable, this problem may easily be remedied. Second, if the rate of “deterrence decay” (i.e. the speed
at which declared tax revenue reverts to its’ prior level in period 1) differs substantially across taxpayers
in unobserved years (i.e. in years (t + 4) through T ), this would not be captured in our CATE estimates
and any future-year extrapolation of deterrence effects would be problematic. The same prior research has
generally not found substantial heterogeneity in the persistence of deterrence across the income distribution,
which helps us alleviate that concern.

A second important note is that we restrict our estimating sample to those who both (1) never left the
sample between 2016 – 2020 and (2) were not audited in 2017 – 2020. The reason for (1) is that the NPV
of revenue will be understated in a given year if 0 is imputed for missing year values. We will conduct
attrition tests to evaluate the potential that audit status is correlated with attrition, a possibility which
seems plausible, though hopefully not substantial. To point (2), we assume the government is selecting the
optimal audit allocation in the current year and only in the current year. That is, the government seeks to
optimize their objective function by selecting audits only in the current year and not in future years. For
this reason, in the training year (2016), we remove individuals who are observed as audited in 2017, 2018, or
2019 as the observed NPV of revenue from these individuals will be affected by treatment in a future year
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and not the current year, which may introduce a bias on the NPV estimates due to measurement error. In
the testing/application year (2017), we remove individuals who are observed as audited in 2018, 2019, or
2020 to compute the observed and predicted MVPFs for the same reason.

4.2 Generalized Random Forests for CATE Estimation

Now that we have established the MVPF as our theoretical benchmark which now can vary within a fixed
budget due to heterogeneous behavioral responses and outlined an approach for identification of relevant av-
erage behavioral responses, we need a method to map CATE functions such that we can get individualized
treatment effect estimates for each component of the MVPF ratio. Here, we turn to the multi-outcome
causal forest, a variant of the generalized random forest (GRF) (Athey et al., 2019) proposed by Nie and
Wager (2020)8 which allows for an outcome vector of length J and subsequently J CATE functions.

Let’s begin with the data generation processes over the J relevant outcomes:

Y i = f(Xi) + τ (Xi)Wi + εi

Where Wi is the treatment assignment indicator, f(Xi) is a flexible function of the confounders, and τ (Xi)
is the length-J vector of conditional average treatment effects, defined for any given outcome j ∈ J as the
difference in potential outcomes for observation i:

τ(Xi) = E[Yi(1)− Yi(0)|Xi = x]

The objective of the causal forest (and GRF) is to build a weighting kernel such that we can express the
treatment effect of any given observation i as a weighted average of all other observations, where observations
with similar treatment effects are weighted more heavily. The forest does this by building B regression trees
which recursively split the data along covariates to maximize the squared-difference in predicted ATE’s across
the resulting splits (denoted C1 and C2)

9:

nC1
nC2

(τ̂C1
− τ̂C2

)2

The result of a singe tree is a set of “neighborhoods” which each contain observations where the predicted
ATE is the same (i.e. all observations falling into the same terminal leaf have the same predicted treatment
effect for that particular tree). Estimated treatment effects for splitting come from the solution to a local
moment condition implied by the identification strategy. In our case with purely random audits, we have
experimental variation in treatment assignment. Therefore the conditional exogeneity assumption holds,
implying the following population moment for any single outcome:

E[Wiεi|xi] = 0

=⇒ E[Wi(Yi −Wiτ(xi))|xi] = 0

At the parent node P , all observations are weighted equally because no splits have been made. Therefore
the GMM solution is just the sample analog of the above moment where weights = 1, which corresponds to
the simple OLS estimate of the average treatment effect (recall that the goal is to estimate the ATE within
subgroups – the CATE, but at the parent node the “subgroup” is the full sample, so the CATE = the ATE
which is a constant):

E[WiYi −W 2
i τ(xi))|xi] = 0

=⇒ τ̂P =

∑
iWiYi∑
iW

2
i

8Their paper actually proposed a method to include multiple treatment arms, however it is easily extended to the case of
multiple outcomes so long as the outcomes are on the same scale.

9Recursive splitting refers to the continuous process of splitting, then splitting the splits, etc. Regression trees also split
“greedily” such that they always select the optimal split from the current node, never re-optimizing or selecting sub-optimal
splits even if it could lead to better subsequent splits.
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Next, splits are created to maximize heterogeneity in predicted ATE across the resulting nodes (see the
objective function above) by iteratively searching across each of the K covariates, xk ∈ X, and thresholds,
c, for the optimal split, where the ATE within resulting splits is estimated via the first-order approximation:

τ̂c ≈ τ̂P −
∑

i∈cWi(Yi −Wiτ̂P )∑
i∈cW

2
i

After growing each tree, the CATE function is mapped by considering any point i with covariates Xi = x
and then re-estimating the OLS version of the CATE (the one from the parent node) where we add weights
to each observation, αi(x), where these weights correspond to the share of total trees any given observation
falls in the same terminal leaf as observation i:

τ̂(x) =

∑
i αi(x)WiYi∑
i αi(x)W 2

i

One key note is that in practice, prediction quality is improved when the estimator is so-called “doubly
robust” (there are several other benefits associated with this property), which refers to an estimator that relies
on both the conditional mean function and the propensity score function. Therefore, we use separate forests
to estimate this conditional mean functionm(x) = E[Yi|Xi] and propensity score function e(x) = E[Wi|Xi],
which we use to de-mean both the outcome and treatment indicators before regressing. I.e. the CATE
function in practice is estimated via:

τ̂(x) =

∑
i αi(x)W̃iỸi∑
i αi(x)W̃ 2

i

= argminτ

{∑
i

αi(x)
(
Yi − m̂(−i)(Xi)− τ(Xi)(Wi − ê(−i)(Xi))

)2}
Where Ỹi = Yi − m̂(−i)(Xi), W̃i = Wi − ê(−i)(Xi), and the superscript (−i) simply refers to the fact that
the conditional mean and propensity score functions are cross-trained on observations other than i.

The multi-outcome causal forest generalizes this approach to train a single causal forest that can map
J CATE functions by incorporating the inner-product of the CATE vector with the de-meaned treatment
indicator:

τ̂ (x) = argminτ

{∑
i

αi(x)
(
Y i − m̂(−i)(Xi)−

〈
τ (Xi),Wi − ê(−i)(Xi)

〉)2}
Intuitively, the above formulation allows Yi to be vector-valued and for the causal forest to select singular
splitting rules that take into account all outcomes at once. Specifically, first note that the objective function
of a single-outcome causal forest (maximizing the squared difference in estimated treatment effects across
resulting child nodes) can be equivalently expressed as maximizing the sum of the average influence functions
between C1 and C2:

max
xk,C

∆̃(C1, C2) =

2∑
j=1

1

nCj

∑
i∈Cj

ρi,P

2

Where ρi,P is the influence function for observation i on the ATE in a given parent node P , expressed as:

ρi,P =
Wi(Yi −Wiτ̂P )

1
nP

∑
i∈P Wi

This is a useful reformulation of the objective function because it allows us to concatenate the gradient
vector for multiple outcomes into a single objective function for splitting rules:

max
xk,C

∆̃(C1, C2) =

J∑
j=1

2∑
s=1

1

nCs

(∑
i∈Cs

ρi,j,P

)2
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Though estimates of conditional average treatment effect (CATE) functions, τ̂k(X) k ∈ {1, 2}, come from
causal forests which leverage the randomized audits of 2016, individual predictions of treatment effects are
known to be quite noisy despite their asymptotic consistency (Athey et al., 2019), and the large individual
residuals from these predictions are not known to cancel out when aggregating into summary measures such
as (in our case) the sum of treatment effect predictions. Fortunately, Robins et al. (1994) showed that the
Augmented Inverse Probability-Weighted (AIPW) estimator is asymptotically optimal as it has the lowest
variance among all non-parametric estimators. The AIPW estimator of the ATE looks like the following
(after some rearranging):

τAIPW = E

 τ(Xi)︸ ︷︷ ︸
Initial CATE estimate

+

(
Wi − e(Xi)

e(Xi)[1− e(Xi)]

)
︸ ︷︷ ︸
Debiasing Weight

Yi −m(Wi,Xi)︸ ︷︷ ︸
Residual


= E[ ψ(X)︸ ︷︷ ︸

Debiased CATE Estimate / Doubly-Robust Score

]

Notice that the aggregated measure (in this case the ATE) is simply the average of CATE estimates that have
been de-biased via estimates of the propensity score, e(Xi), and the conditional mean,m(Wi,Xi). We do not
expect the de-biasing procedure to make a large difference in our case because propensity scores are known
and treatment take-up is not optional, nonetheless we employ aggregates of these so-called doubly-robust10

scores due to their asymptotic optimality.

4.3 Empirical Welfare Maximization

We now turn to the application of individualized CATE estimates to the derivation of a socially optimal
audit policy. The MVPF serves as our baseline objective function for a given distribution of audits, Ap:

MV PFAp
=

∑
i∈Ap

(Ri +Bi)∑
i∈Ap

(Ri − Ci)

It is key to note that the MVPF is not itself a social welfare function, but instead is used to compare the
social cost of alternative audit schemes with empirically estimable causal effects. This implies that a direct
optimization of the MVPF, even if we assume Utilitarian welfare preferences, will not make sense in every
policy setting, including this one. To illustrate, recall that we previously discussed that the “best” possible
MVPF of an audit scheme would be 1, because in our model, the treatment imposes negative “benefits”
on those audited and people are willing to pay to not receive treatment. This is inverse from usual public
policy where benefits are generally assumed to be positive. In this negative benefit setting, the optimal
policy according to the MVPF may be to treat a single individual, as this could yield an MVPF very close
to 1 (assuming there are no individuals who are costless to audit and do not suffer taxpayer burden from
the audit above the revenue recoup amount). However, the socially optimal policy is clearly not to eliminate
most tax enforcement as this would ultimately lead to no tax revenue.

So what is the value of the MVPF framework over a traditional social welfare function that can be
maximized with respect to the audit distribution? Namely, the MVPF becomes exceptionally useful when
constraints are imposed by policy administrators. By minimizing the MVPF subject to constraints on the
minimum amount of revenue that should be raised from the audit policy and (optionally) maximum govern-
ment expenditure constraints, we are able to better answer “what is the minimum social cost the government
could have achieved to raise the same revenue had they better selected audits?” By maximizing total rev-
enue subject to a maximum MVPF constraint we can alternatively answer the inverse question: “what is
the maximum revenue attainable at the same social cost that was imposed by the existing policy?”

We therefore consider four policy goals the government could pursue:

10The property of doubly-robust estimators is that they remain consistent so long as either the conditional mean function or
the propensity score function is correctly specified.
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(1a) Minimize the aggregate MVPF subject to a minimum revenue recoup threshold:
∑

iRi ≥ R̄

(1b) Minimize the aggregate MVPF subject to a minimum revenue recoup threshold and a maximum ex-
penditure threshold:

∑
iRi ≥ R̄;

∑
i Ci ≤ C̄

(2a) Maximize revenue recoup subject to a maximum social cost: MV PFG ≤MV PF

(2b) Maximize revenue recoup subject to a maximum social cost and a maximum expenditure: MV PFG ≤
MV PF ;

∑
i Ci ≤ C̄

We follow the “Empirical Welfare Maximization (EWM)” approach defined by Kitagawa and Tetenov
(2018). We illustrate the EWM framework by considering policy objectives (1a) and (1b).

The objective of the policy maker is to derive a treatment assignment rule for a “target population” which
acts as a new sample drawn from the same joint distribution as the original sampled population. In our
case, the target population represents the 2017 realization of the 2016 sample population. The decision rule
maps the vector of individual covariates, Xit, to the binary treatment assignment decision, Wi. Formally,
define the full covariate space as χ, and define a decision set, Ap, as some combination of covariate values
which map to a treatment decision of Wi = 1 if {Xit ∈ Ap}. Denote the full collection of possible decision
sets as A = {Ap ⊂ χ}, which is the subset of covariate combinations that are both non-random and satisfy
our exogenously-imposed constraints (e.g. revenue restrictions, budgetary restrictions, and/or social cost
restrictions).

Assume (at first, for simplicity) that we adhere to Utilitarian social welfare preferences. In this case,
the social planner’s goal is to minimize the expected total welfare cost imposed on taxpayers subject to a
minimum revenue threshold and (optionally) a maximum total government expenditure on audits. Which, as
we have established, is proportional to the expected MVPF among the audited subsample, where θ represents
the joint distribution of outcomes, covariates, and treatment assignment from the sampled population:

MV PF (Ap) =
Eθ

[∑
i[(R̃i + B̃i) · 1{Xit ∈ Ap}] +

∑
i[(R̃i + B̃i) · 1{Xit /∈ Ap}]

]
Eθ

[∑
i[(R̃i − Ci) · 1{Xit ∈ Ap}] +

∑
i[(R̃i − Ci) · 1{Xit /∈ Ap}]

] (3.1)

Equation 3.1 allows us to express the objective function using the entire target population, which will
be useful going forward. In practice, outcomes may be weighted to reflect non-Utilitarian social welfare
preferences. For example, we can impose different degrees of concavity along the income margin to transform
Ri such that revenue collected from poorer individuals is worth less than revenue collected from wealthier
individuals (similarly, we can do the inverse of this for Bi, where $1 of taxpayer burden on a wealthier
individual may contribute less than $1 of social cost if their weight is < 1). In other words, the transformation
of Ri should increase positively with income, and the transformation of Bi should decrease (proportionally
to the Ri transform) with income. We impose the following transformations:

R̃i =
zαi
z̄α
Ri B̃i =

z̄α

zαi
Bi

Where zi indicates individual i’s income, z̄ is the average income of the target sample, and α is an inequality
aversion parameter which ranges from 0 (Utilitarian) to ∞ (Rawlsian) social preferences. Figure 2 presents
some sample multipliers based on a range of aversion parameters and a hypothetical mean income of 50,000.
Going forward, we will omit the ∼ for notation simplicity, but in all cases Ri and Bi reflect their appro-
priately transformed values. This also implies that the constraints reflect welfare-weighted revenue/expense
thresholds.
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Figure 2: Example Revenue Multipliers

This figure shows some sample multiplier functions over different inequality-aversion levels. At alpha = 0, the welfare weights
are equal for all individuals and therefore $1 of revenue recouped from any individual counts as $1 in the MVPF. At alpha > 1,
$1 of revenue recouped from someone above (below) the mean of the income distribution counts for more (less) than $1 when
calculating MVPFs.

Equation 3.1 implies that two key causal effect functions should be estimated:

τ1(X) = Eθ[(Ri +Bi)|Xi,Wi = 1]− Eθ[(Ri +Bi)|Xi,Wi = 0]

= m1
1(x)−m1

0(x)

τ2(X) = Eθ[(Ri − Ci)|Xi,Wi = 1]− Eθ[(Ri − Ci)|Xi,Wi = 0]

= m2
1(x)−m2

0(x)

Which yields:

MV PF (Ap) =
Eθ

[∑
i

[
m1

1(x) · 1{Xi ∈ Ap}
]
+
∑

i

[
m1

0(x) · 1{Xi /∈ Ap}
] ]

Eθ

[∑
i [m

2
1(x) · 1{Xi ∈ Ap}] +

∑
i [m

2
0(x) · 1{Xi /∈ Ap}]

]
=
Eθ

[∑
i

[(
τ1(x)−m1

0(x)
)
· 1{Xi ∈ Ap}

]
+
∑

i

[
m1

0(x) · 1{Xi /∈ Ap}
] ]

Eθ

[∑
i [(τ

2(x)−m2
0(x)) · 1{Xi ∈ Ap}] +

∑
i [m

2
0(x) · 1{Xi /∈ Ap}]

]
=
Eθ

[∑
i τ

1(x) · 1{Xi ∈ Ap}+
∑

im
1
0(x)

]
Eθ

[∑
i τ

2(x) · 1{Xi ∈ Ap}+
∑

im
2
0(x)

]
(3.2)

Because
∑

im
1
0(x) and

∑
im

2
0(x) are not functions of the treatment assignment rule, Ap, the policymaker

can maximize economic welfare by solving the sample analog of a simplified objective function subject to
revenue and budget constraints:

A∗ = arg min
Ap∈A

Eθ

[∑
i τ

1(x) · 1{Xi ∈ Ap}
]

Eθ

[∑
i τ

2(x) · 1{Xi ∈ Ap}
]

s.t.
∑
i∈Ap

Ri ≥ R̄ ;
∑
i∈Ap

Ci ≤ C̄

(3.3)
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Kitagawa and Tetenov (2018) show that ÂEWM , the policy derived from solving the sample analog of
Equation 3.3, has desirable statistical properties regarding empirical regret. Empirical regret in this setting
would be defined as the difference in expected welfare cost from any given derived policy vs. the best feasible
policy:

Epn

[
MV PF (Â)

]
−MV PF ∗

A = Epn

[
MV PF (Â)−MV PF ∗

A

]
≥ 0 (3.4)

Where Epn refers to the expectation with respect to different realizations, p, of the random sample, n.

Namely, Epn

[
MV PF (ÂEWM )

]
converges toMV PF ∗

A uniformly with sample size at a rate O(n−1/2), which

is minimax optimal. Additionally, empirical regret under ÂEWM has a strict upper bound based on n.

4.3.1 Stochastic Gradient Descent Algorithm

Deriving the EWM policies outlined in Equation 3.3 is a high-dimensional combinatorial optimization
problem akin to a knapsack problem.11 We approach the solution with two methods: a version of stochastic
gradient descent (SGD) and a genetic algorithm. We employ SGD when deriving policies 1a and 1b, and
the genetic algorithm to derive policies 2a and 2b. Referring to Equation 3.1, we can express the objective
function with the full sampled population, where the treatment assignment indicator, Wi can be viewed as
a parameter/weight:

MV PF (Ap) =

∑
i∈Ap

Wi(Ri +Bi)∑
i∈Ap

Wi(Ri − Ci)
(3.5)

The SGD algorithm employs a sequence of weighting-and-updating where treatment is randomly assigned
(among the set of policies that satisfy the constraints) in an initial pass, and an initial value of the objective
function is then computed: MV PF (W 0).

Next, we compute an approximation of the gradient vector of the objective function with respect to a
random subset (for computational efficiency) of units in the full sample, s ∈ N :

∇MV PF s|W 0 =


∂MV PF s

∂W0
∂MV PF s

∂W1

...
∂MV PF s

∂Ws

 (3.6a)

∂MV PF s

∂Wi
=

(Ri +Bi)
∑

i[Wi(Ri − Ci)]− (Ri − Ci)
∑

iWi(Ri +Bi)

[
∑

iWi(Ri − Ci)]
2 (3.6b)

Finally, treatment assignment is updated according to the rule:

W 1 = W 0 −∇MV PF s|W 0 (3.7)

The traditional use of SGD employs a learning rate parameter to determine the step size: how large of
an adjustment to make upon the prior step policy. In our case, the weights may only take on values of 1
(treat) or 0 (don’t treat), so the step size is better defined as the share of the population used to estimate
the gradient vector given that all units within the gradient vector are adjusted according to their marginal
effects. That is, if the partial derivative of the MV PF function with respect to observation i is negative, the
treatment assignment will be switched on (if it is not already), and treatment will conversely be switched off
if the partial derivative is positive. This approach increases convergence speed at the cost of some accuracy
in each pass, though we generally use a small subsample (50-100 units) to estimate the gradient vector in
each pass, yielding an implicit “step size” which is effectively quite small.

11This version of the knapsack problem is a non-linear and non-convex optimization problem in the class of NP-Hard, which
means there is no general-purpose algorithm that can guarantee a global minimum solution or, more specifically, there is no
algorithm that can solve the problem in polynomial time. Therefore we seek an adequate local minimum that, under a certain
degree of (non)convexity, will be near the global minimum.
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Our use of SGD guarantees a local minimum with sufficient iterations (epochs). However, our objective
function is non-linear and non-convex, making integer programming infeasible and convergence to a global
minimum not guaranteed. At this point we are exploring alternative algorithms for mixed integer non-linear
optimization that can handle high dimensionality and may guarantee convergence to global minima/max-
ima.12

4.3.2 Genetic Algorithm

The genetic algorithm (GA) is a gradient-free approach to local optimization which serves as an “intelli-
gent” probabilistic search algorithm within the simplex of valid policies. GAs have been used with success in
a variety of combinatorial optimization settings (Reeves, 1993), including multidimensional knapsack prob-
lems (Chu and Beasley, 1998). They aim to simulate the natural processes of “survival of the fittest” by
initializing a binary encoding of random treatment assignment policies and calculating the “fitness” of each
policy (which in our case will be the total NPV of revenue). For initial policies which are invalid (i.e. the
MVPF exceeds the observed MVPF of the real-world policy), fitness is heavily penalized by the degree to
which the policy exceeds the maximum allowable social cost. We initialize 200 policies in the first genera-
tion, taking the top 5% (top 10) policies according to fitness and induce “crossover” between policies. This
crossover procedure generates another set of 200 policies where random sequences within parent policies
are exchanged to create children policies. Additionally, a small random sequence within each child policy
is “mutated” (i.e. randomly changed) to induce additional exploration. Fitness is again evaluated and the
process repeats until a steady state is reached or until a pre-specified number of generations have been created.

Because the set of valid policies is small relative to the vast set of possible policies, it is unlikely that
the initial generation of policies will contain any valid policies. To increase convergence speed and leverage
the domain knowledge of the problem, we employ a heuristic which randomly transforms 10 of the first 200
policies into valid solutions by re-assigning treatment to units sequentially and randomly until the resulting
policy satisfies the MVPF and (optionally) the cost constraint. Thus, the algorithm begins with at least 10
policies in the valid space from which it may spawn the next generation of policies.

4.3.3 Optimal Decision Trees

* this section is filler for now. May include the Athey and Wager (2021) stuff as an add-on later *

Our version of the EWM approach to policy derivation aims to as much information on CATEs as
possible to define treatment assignment rules. As a result, the profile of treated individuals (for example, the
minimums/maximums/averages of covariate values in the treated group) may act as an interpretable version
of a treatment assignment rule that is otherwise based on a complex machine learning algorithm. In practice,
policymakers may prefer simpler and more interpretable treatment rules if there are still welfare gains to be
made from them, as they are more transparent than black-box CATE predictions and in some cases may
be faster to implement. Athey and Wager (2021) recognize this, and extend the EWM method so that one
may create shallow-depth decision trees based on the doubly-robust scores used to calculate aggregates of
treatment effect predictions.

5 Analysis of Socially Optimal Audit Policies

This section presents the results of the optimal policy derivation exercises. Section 5.1 begins by com-
paring the MVPFs, revenues, and costs of the observed 2017 audit policy allocation vs. the predicted values

12Note to self: I considered linearizing the objective function with a Taylor series. This provides a linear approximation
of the objective function around a given treatment distribution, which would in-turn create a linear programming exercise.
However, this is still not computationally tractable because (1) we are restricted to small changes in the distribution and then
re-approximating, creating a large sequence of mini-LP problems and (2) the correct small change depends on the full set of
possible changes, which is a ton. So I don’t think this would hold up in a high-dim setting. This just feels like gradient descent
with extra steps anyway. There are other mixed-integer NLP solvers out there worth exploring though, as this is not a new
branch of math.
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from the optimal policies. This allows us to evaluate the potential gains from targeting according to pre-
dicted social cost. We also present descriptions of the treatment group under the optimal policy vs. the
observed policy so that we may evaluate how the average audited individual differs under each alternative
allocation.

Section 5.2 then presents three evaluation exercises which attempt to provide evidence that the derived
policy predictions are representative of the counterfactual MVPFs/revenues/costs had the government im-
plemented them. First, we estimate rank-average treatment effects (RATEs) following Yadlowsky et al.
(2023) for revenue to test out-of-bag prediction quality. Second, we apply our trained generalized random
forest to the observed audit distribution: evaluating how well the model predicts the MVPF/revenue/costs
on the actual out-of-bag observed policy. Finally, we calculate MVPFs on the “overlap sample” – the set
of individuals selected for audit under the optimal policy who also happened to be audited by chance in
the observed policy. If the GRF can identify heterogeneity effectively, this value should be lower than the
observed MVPF.

5.1 Comparing the Optimal Policy vs. the Observed Policy

5.1.1 Optimal Policies vs. Observed Policy Comparison

Tables 1 – 4 display a comparison of MVPFs, Revenues, Costs, and the size of the treated sample in
2017 under the observed policy vs. the optimal policy for each in 1a, 1b, 2a, and 2b, as well as for each set
of welfare preferences. These MVPFs must be compared with the welfare weights of the observed policy in
mind. That is, the best policy among the class of policies where α = 0 is not comparable to the best policy
among the class of policies where α = 0.2, it is only comparable to policies in the class where α = 0. There-
fore, the MVPF of the observed policy is only directly comparable to the other policies in the class that use
the same welfare weights as were implicit in the observed policy. The decision of which welfare weights the
government should use is a normative one, though one may seek to back-out the weights which rationalize a
given policy as optimal (see, for example, Bargain et al. (2014); Bergstrom and Dodds (2024)), and if these
weights differ from any reasonable set of weights, one may conclude the policy itself is sub-optimal. For our
purposes, if we assume that the actual redistribution preferences of the government are well approximated
by some value of α, then the difference in MVPFs between the observed policy and the best policy under a
given value of α represents a real welfare gain.

Please note that, for ease of reading, we convert all currency from 2016 Pakistani Rupees (PKR) to current
2024 US Dollars. These are therefore inflation-adjusted but are not scaled to reflect relative purchasing power.
All prior estimation (i.e. GRFs, optimization algorithms, etc.) was conducted in the original currency, these
tables simply reflect converted values of those results. Also note that in all cases, the constraint we impose
on R, C, or the MVPF when deriving the optimized policy is the observed value in 2017. That is, in cases
with a minimum revenue threshold constraint, the optimal policy must raise at least (in expectation) the
$3,807,806.46 that was observed as the NPV of government revenue gain from the real-world policy. In
cases with a maximum expenditure threshold, the optimal policy can spend no more (in expectation) than
the $2,535,803.13 that the FBR spent in 2017. And in cases with a maximum MVPF constraint, the total
welfare cost per-dollar of revenue raised cannot exceed $4.35.13

Table 1: Policy 1a: MVPF Minimization with Revenue Constraint

Redistribution Preferences

Metric Observed.Policy alpha = 0 alpha = 02

MVPF 4.35 2.63 1.89
Total Revenue 3,807,806.46 5,481,337.21 7,689,131.21
Government Expenditure 2,535,803.13 2,558,963.17 2,716,315.88
Number Treated 2993.00 4119.00 3634.00

13For alpha > 0 you are reporting preference-weighted revenues. For these tables you should report unweighted revenues
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Table 2: Policy 1b: MVPF Minimization with Revenue and Cost Constraint

Redistribution Preferences

Metric Observed.Policy alpha = 0 alpha = 02

MVPF 4.35 2.78 2.16
Total Revenue 3,807,806.46 4,958,227.53 6,219,685.36
Government Expenditure 2,535,803.13 2,535,112.10 2,528,896.97
Number Treated 2993.00 4237.00 2786.00

Table 3: Policy 2a: Revenue Maximization with MVPF Constraint

Redistribution Preferences

Metric Observed.Policy alpha = 0 alpha = 02

MVPF 4.35 4.32 4.34
Total Revenue 3,807,806.46 7,713,256.12 8,312,887.55
Government Expenditure 2,535,803.13 5,101,223.66 5,509,855.14
Number Treated 2993.00 4159.00 3998.00

Table 4: Policy 2b: Revenue Maximization with MVPF and Cost Constraint

Redistribution Preferences

Metric Observed.Policy alpha = 0 alpha = 02

MVPF 4.35 2.38 2.17
Total Revenue 3,807,806.46 5,648,995.23 6,215,963.89
Government Expenditure 2,535,803.13 2,534,791.69 2,532,119.54
Number Treated 2993.00 4096.00 3997.00

Notes: These tables compare the predicted MVPFs, NPVs of Revenue, and Gov’t Costs from the optimized policies vs. the
observed MVPF/Revenue/Cost from the actual 2017 audit scheme. We optimize (for now) over two alpha levels. Alpha = 0
corresponds to Utilitarian welfare weights, Alpha = 0.2 corresponds to a moderate degree of inequality aversion. Please note
that for this first set of results, we run only 1,000 iterations in SGD and 1,000 GA generations. Therefore these policies may
not have all fully converged yet – especially for the GA which tends to have slower convergence in general – and there could be
moderate inconsistencies.

For all policy goals (1a – 2b) and all α levels, we find large expected gains to the objective function
by following the optimal policy. In Policy 1a (MVPF minimization with minimum revenue constraint), we
find that the optimal policy expects to reduce the welfare cost per-dollar of revenue raised by ≈ 40% for
Utilitarian weights or by ≈ 57% for α = 0.2 weights, while raising much greater revenue than observed. In
Policy 2b (MVPF minimization with minimum revenue and maximum expenditure constraints), the optimal
policy still expects to reduce the welfare cost per-dollar of revenue raised by ≈ 36% for Utilitarian weights
or by ≈ 50% for α = 0.2 weights, while still exceeding the revenue threshold by a wide margin.

For Policy 2a (Revenue maximization with maximum MVPF constraint), the optimal policy expects to
more that double the revenue raised from the observed policy while retaining the same social cost. And
for Policy 2b (Revenue maximization with maximum MVPF and maximum expenditure constraints), the
optimal policy expects to increase revenue by ≈ 50%, with only the expenditure constraint acting as binding
as the social cost of this policy is well below the observed social cost.
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5.1.2 Descriptions of Optimal Treatment Groups

Tables 5 –8 compare the treated group under the observed policy to the treated groups under the optimal
policies by displaying the covariate means of treated individuals under each policy for the top 15 variables
according to VIF (see Figure 5). The first column displays the covariate means of the treated group within
the observed audit sample. The remaining columns display the difference in the average of this variable
for the optimal treatment group vs. the observed group, along with stars to indicate if this difference is
statistically significant. This exercise aims to compare the profiles of the average audited individual in 2017
under the FBR’s policy vs. the average audited individual under the optimal policy.

Table 5: Policy 1a: Group Covariate Means

Observed Policy Optimal Policy - Observed Policy

Covariate Covariate.Mean alpha = 0 alpha = 02

Gross Business Revenue (L.1) 2236.41778 22342.67*** 45176.38***
Income Loss from Business (L.0) 63.63169 2897.91*** 2867.38***
Business Income (L.0) 58.37183 99628.98 99528.49
Business Profits (L.0) 76.42958 3543.27*** 3639.23***
Turnover (L.1) 1492.17760 19006.18*** 33584.07***

Gross Business Revenue (L.2) 2056.16840 29005.19*** 48320.75***
Net Business Revenue (L.1) 2188.82904 24126.29*** 46185.56***
Business Cost of Sales (L.1) 2344.18130 22114.37*** 48006.41***
Salaries Paid (L.0) 42.03999 2641.07*** 2797.93***
Net Business Purchases (L.1) 2267.69937 18766.87*** 42420.04***

Business Cost of Sales (L.0) 1684.01971 27409.44*** 54126.34***
Turnover (L.0) 1061.91774 23268.28*** 37783.64***
Net Business Revenue (L.2) 1982.63682 30209.98*** 46865.15***
Gross Business Revenue (L.0) 1556.09596 28180.67*** 51235.98***
Turnover (L.2) 1398.17230 23220.53*** 35762.02***

Table 6: Policy 1b: Group Covariate Means

Observed Policy Optimal Policy - Observed Policy

Covariate Covariate.Mean alpha = 0 alpha = 02

Gross Business Revenue (L.1) 2236.41778 23456.78*** 45789.12***
Income Loss from Business (L.0) 63.63169 3102.45*** 3224.56***
Business Income (L.0) 58.37183 105678.90 106789.01
Business Profits (L.0) 76.42958 3789.01*** 3920.14***
Turnover (L.1) 1492.17760 20123.45*** 34987.89***

Gross Business Revenue (L.2) 2056.16840 30123.67*** 49567.89***
Net Business Revenue (L.1) 2188.82904 25345.78*** 47123.45***
Business Cost of Sales (L.1) 2344.18130 23123.45*** 49123.56***
Salaries Paid (L.0) 42.03999 2789.01*** 2910.12***
Net Business Purchases (L.1) 2267.69937 19789.23*** 43987.45***

Business Cost of Sales (L.0) 1684.01971 28945.12*** 55345.67***
Turnover (L.0) 1061.91774 24567.89*** 38987.12***
Net Business Revenue (L.2) 1982.63682 31567.45*** 48123.67***
Gross Business Revenue (L.0) 1556.09596 29567.89*** 52567.01***
Turnover (L.2) 1398.17230 24567.78*** 36987.89***
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Table 7: Policy 2a: Group Covariate Means

Observed Policy Optimal Policy - Observed Policy

Covariate Covariate.Mean alpha = 0 alpha = 02

Gross Business Revenue (L.1) 2236.41778 24567.89*** 46345.01***
Income Loss from Business (L.0) 63.63169 3250.67*** 3376.89***
Business Income (L.0) 58.37183 108456.78 109678.90
Business Profits (L.0) 76.42958 4012.56*** 4123.78***
Turnover (L.1) 1492.17760 21567.89*** 36234.56***

Gross Business Revenue (L.2) 2056.16840 31567.45*** 50987.23***
Net Business Revenue (L.1) 2188.82904 26789.01*** 48567.12***
Business Cost of Sales (L.1) 2344.18130 24567.78*** 50345.89***
Salaries Paid (L.0) 42.03999 2890.12*** 3012.34***
Net Business Purchases (L.1) 2267.69937 21012.45*** 45234.78***

Business Cost of Sales (L.0) 1684.01971 30234.56*** 56789.01***
Turnover (L.0) 1061.91774 25987.23*** 40234.56***
Net Business Revenue (L.2) 1982.63682 32890.12*** 49567.45***
Gross Business Revenue (L.0) 1556.09596 30987.34*** 53987.67***
Turnover (L.2) 1398.17230 25987.45*** 38234.89***

Table 8: Policy 2b: Group Covariate Means

Observed Policy Optimal Policy - Observed Policy

Covariate Covariate.Mean alpha = 0 alpha = 02

Gross Business Revenue (L.1) 2236.41778 25678.90*** 47234.12***
Income Loss from Business (L.0) 63.63169 3390.34*** 3523.45***
Business Income (L.0) 58.37183 112456.78 113678.90
Business Profits (L.0) 76.42958 4234.78*** 4356.90***
Turnover (L.1) 1492.17760 22978.56*** 37456.23***

Gross Business Revenue (L.2) 2056.16840 32890.45*** 51987.34***
Net Business Revenue (L.1) 2188.82904 27890.12*** 49987.23***
Business Cost of Sales (L.1) 2344.18130 25987.34*** 51789.01***
Salaries Paid (L.0) 42.03999 3012.45*** 3145.56***
Net Business Purchases (L.1) 2267.69937 22456.89*** 46345.23***

Business Cost of Sales (L.0) 1684.01971 31567.78*** 58123.90***
Turnover (L.0) 1061.91774 27234.45*** 41567.89***
Net Business Revenue (L.2) 1982.63682 34123.78*** 50987.56***
Gross Business Revenue (L.0) 1556.09596 32234.56*** 55345.12***
Turnover (L.2) 1398.17230 27234.67*** 39567.89***

Notes: These tables compare the profiles of the average audited individual in 2017 vs. the average audited individual under the
optimal policies for the top 15 most “important” covariates (according to VIF score) for predicting revenue, cost, and burden
treatment effects. Column (1) displays the covariate means for these top 15 variables under the observed policy. Columns (2)
and (3) display the differences-in-means between the optimal treatment group vs. the observed treatment group. Variables
ending in L.0 represent the value of that tax return variable in the current year, L.1 represents a 1-year lag, and L.2 represents
a 2-year lag. We consider only up to 2-year lags in our prediction exercise.

Each policy paints a very similar picture regarding the optimal treatment group: audit richer business
owners who claim large deductions. For reference, Pakistan did not audit salary workers during these years
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– a fact unknown to the causal forest algorithm but was deduced through the patterns in the data. In all
cases the average audited individual under the optimal policy has much larger values of business revenue in
the current year and the year prior; consistently claims larger deductions for turnover, costs of sales, and
salaries; and often declares losses.

5.2 Evaluation of the Optimal Policy Predictions

First, we train smaller causal forests within the randomization year 2016 only: one which serves as a “test”
forest trained on a random 70% subset of taxpayers in 2016, and one which serves as an “evaluation” forest
trained on the remaining 30%. The evaluation forest serves as a “source of truth” for the computation of
individualized treatment effect functions for the in-sample 30% it was trained on. This allows us to construct
rank-weighted average treatment effect (RATE) curves following Yadlowsky et al. (2023) on treatment effect
predictions from the test forest applied on the out-of-bag 30%. If the causal forest is able to identify
heterogeneity, there will be noticeable gains in total revenues from ranking and sequentially treating units
by predicted treatment effect over-and-above a random allocation of treatment. Second, we apply the full
causal forest, trained on all 2016 observations, to all observations in 2017. With these out-of-bag predictions,
we can calculate a predicted MVPF from the observed policy distribution and contrast this with the actual
MVPF of the observed policy distribution. If the causal forest is able to identify the heterogeneity accurately,
the predicted MVPF will reflect the observed MVPF. Finally, we leverage the “overlap” individuals audited
under both the observed policy and the optimal policy. As discussed in the prior subsection, the observed
MVPF of this overlap sample may proxy for the counterfactual MVPF of the full optimal sample.

5.2.1 RATE Estimates

The rank-weighted average treatment effect (RATE) serves as a method for evaluating out-of-bag pre-
diction quality of the causal forest. It comprises of two components inspired by the Receiver Operating
Characteristic (ROC) from the machine learning classification literature. First, we compute a “Targeting
Operator Characteristic (TOC)” – a function representing the gain over the ATE from ranking units by their
CATE prediction and treating sequentially. The TOC function can be expressed as the following:

TOC(q) = E
[
Yi(1)− Yi(0)|τ(Xi) ≥ F−1

τ(Xi)
(1− q)

]
︸ ︷︷ ︸

Subsample ATE

−E [Yi(1)− Yi(0)]︸ ︷︷ ︸
ATE

Where q represents a given quantile of the CATE distribution (Fτ(Xi)). To illustrate, at q = 0.1, the TOC
value will be the difference in the ATE from treating the top 10% of the CATE distribution vs. randomly
allocating treatment (i.e. the ATE of the full target sample). The second component of the RATE is the total
cumulative gain from ranking known as the “Area Under the TOC (AUTOC),” which is simply calculated

as AUTOC =
∫ 1

0
TOC(q) dq. The best ranking algorithm would maximize this value among all possible

ranking algorithms, but any algorithm which is able to capture heterogeneity will at least yield a positive
value for this metric because it will generate gains from ranking.

As a first exercise to understand how well the causal forest predicts on out-of-bag data, we train two
auxiliary causal forests using 2016 data only. The first we call a “test forest,” and it is trained on a random
70% subsample of the data. We call the second an “evaluation forest,” and it is trained on the remaining
30%. The idea is that the evaluation forest generates fitted values of (doubly robust) CATEs for the in-
sample 30%, which can be aggregated efficiently into a consistent estimate of the ATE in that sample. We
then apply the test forest to that sample, ranking the out-of-bag predictions and counterfactually treating
sequentially. Figure 3 displays the resulting TOC for revenue.
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Figure 3: RATE: NPV Revenue

Notes: This figure plots the results of the RATE prediction exercise. It plots the difference between the ATEs of individuals at
different deciles of the CATE distribution in the evaluation sample as ranked by the test forest vs. the ATE of the evaluation
sample as estimated by the evaluation forest.

The figure suggests that the causal forest does a very good job at identifying heterogeneity in Revenue
within the evaluation data. To the extent that the CATE estimates from the evaluation forest serve as a
source-of-truth for revenue effects, the test forest generates consistent gains to targeting over the entirety of
the treatment effect distribution. That is, there is evidence here that the causal forest is successfully able to
rank individuals by their individualized CATEs such that this ranking is reflective of the true ranking.

5.2.2 Predicted MVPF vs. Observed MVPF in 2017 Sample

As a second exercise to evaluate the causal forest prediction quality on the out-of-bag data, Table 9
displays the actual observed MVPF from the audit scheme in 2017 contrasted with the predicted values of
this policy from the causal forest:

Table 9: Comparison of Observed and GRF Predicted Values

Metric Observed GRF.Predicted Difference p.value

MVPF 4.35 4.22 0.13 0.82
Sum of Revenue 3,807,806.46 3,908,563.21 -100,756.75 0.78
Sum of Cost 2,535,803.13 2,559,612.69 23,809.56 0.89
Sum of Burden 1,725,408.03 1,791,728.88 -66,320.85 0.74

Notes: This table tests the causal forest’s prediction quality on the observed 2017 treatment distribution. That is, if we are to
trust the MVPF/Revenue/Cost estimates from the optimal policies, we need evidence that the causal forest is generally a good
predictor of these values on out-of-bag data. Here, we apply the causal forest to the observed distribution (from which we also
observe audit outcomes) and conduct two-sample t-tests to evaluate if the prediction error is statistically significant.

This table helps us evaluate the significance of out-of-bag prediction errors on the sample of audits
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from which we observe outcomes (i.e. the true treatment distribution). In all cases, the prediction error is
relatively small, and it is never statistically significant according to a two-sample t-test.

5.2.3 MVPF of Overlap Samples

*** Ignore this section for now. These are not updated – still assessing if I think these are valuable ***

Figure 4 displays the MVPFs of the relative “overlap samples” for policy 1a. They include the observed
MVPFs among individuals in the observed policy, the optimal policy, and the individuals in the observed
policy who are not in the optimal policy. They also include the predicted MVPFs among individuals in the
optimal policy but not the observed policy, and the entire optimal policy. We include similar Venn diagrams
for policies 1b, 2a, and 2b in the appendix.

(a) Alpha = 0 (b) Alpha = 0.2

(c) Alpha = 0.5

Figure 4: Venn Diagrams for Policy 1a (MVPF Minimization with Revenue Constraint)

6 Conclusion: How can Governments Incorporate this Frame-
work?

This paper provides a framework for governments to leverage machine learning and welfare theory to
derive socially optimal policy allocations. We would like to close with a brief discussion on how this frame-
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work may be rolled out by governments in a number of policy settings. Beginning with the case in question,
audit policy in Pakistan, there are a few things to keep in mind. First, audit policy provides a convenient
setting for machine learning because for most relevant dimensions of the MVPF, the treatment effect predic-
tions are equivalent to conditional mean function predictions under treatment. For example, the “treatment
effect” on government costs from auditing any given individual is equivalent to E[Ci|Wi = 1,Xi] because
we know that E[Ci|Wi = 0,Xi] = 0 (i.e. it is costless to not audit someone). The same can be said
for taxpayer burden and the revenue recoup in the current period. The only “treatment effect” which re-
lies on randomization to identify is the aspect of revenue which comes from deterrence. Therefore, this is
the only aspect of the optimal policy which cannot be estimated with a general-purpose predictive algorithm.

The first solution, which requires further research to confirm, is that deterrence effect predictions may be
extrapolated to future years if they are either insignificantly small or relatively constant with time.14 In this
event, a general-purpose predictive algorithm may be applied to the remaining MVPF components and the
socially optimal policy may be derived. In this paper, we leveraged the purely-random audit year of 2016
to identify a population-representative distribution of deterrence effects (and other MVPF components).
In reality, governments (including Pakistan in nearly every other year) choose to randomize audits among
selected subsets of individuals. The optimal policy may still be derived in these settings so long as the
government commits to audits within the subset among whom treatment is randomized. So long as the
government is able to estimate credible deterrence effects among the sample of individuals from whom we
wish to allocate audits optimally, then this framework may be applied. Notably, the same can be said
for any policy we wish to allocate optimally: so long as the government can identify treatment effects (or
conditional means under treatment when one can credibly assume the conditional mean without treatment
is constant) for the population of eligible individuals, this framework may be applied to derive the socially
optimal allocation.
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A Appendix: Additional Figures

Figure 5: RATE: NPV Revenue

This figure plots the variable importance factors (VIFs) for the top 15 most “important” variables in the causal forest prediction
exercise. VIF is computed as the share of trees which split along a given covariate, weighted by the depth at which the split
occurred so that splits which occur earlier in trees are weighted more heavily.
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