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1 Introduction

Individuals are often unable to work as much as they would prefer in an ideal world due to

various factors such as (1) high costs of changing jobs (Varejão and Portugal, 2007), (2) employer

mandates on how many hours per week they must work (Dickens and Lundberg, 1993b), (3)

a lack of desirable jobs, and/or (4) misperceptions about the value of their time (DellaVigna,

2009). This paper seeks to explore the magnitudes and quantify the welfare cost of these sorts

of labor market frictions.

More specifically, this paper seeks to quantify how much people would be willing to pay

to (hypothetically) remove frictions which impede them from supplying their optimal amount

of labor. For instance, how costly is it (from the individual’s perspective) for a person who

would like to work 35 hours/week but can only find a job that requires 40 hours/week? We

begin by analyzing a standard, static labor supply model in which individuals have utility over

consumption and hours worked. Individuals’ maximize utility with some choice of ideal (i.e.,

frictionless) hours h∗, but frictions lead individuals to end up working a different amount of

actual hours with frictions, hF . We assume to begin with that agents correctly perceive wages,

taxes, and their utility function, but otherwise do not take a stance on the type of frictions

that generate this deviation: some examples which are consistent with our framework are fixed

adjustment costs, search costs, or the presence of limited choice sets. We refer to these sorts

of frictions collectively as “adjustment frictions”. First, we show how to recover an estimate of

the willingness-to-pay (WTP) to remove adjustment frictions using two empirical objects: (1)

the percentage difference between ideal and actual hours and (2) the Hicksian elasticity of ideal

hours with respect to the after-tax wage rate. The core intuition, which is similar to insights

in Akerlof and Yellen (1985), Mankiw (1985), and Chetty (2012) is that the Hicksian elasticity

encodes the curvature of utility. This estimate is valid up to third order terms in the percentage

difference between ideal and actual hours. For very large frictions (i.e., when the percentage

difference between ideal and actual hours is very big), we derive revealed preference arguments
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to bound the size of the WTP to remove frictions, thereby mitigating the impact of third and

higher order terms on our estimates. Importantly, our framework is quite general insofar as we

make no structural assumptions on the utility function or the type of frictions agents face.

Next, we empirically implement this methodology to recover the cost of adjustment frictions.

Towards this end, we use data from the National Survey of the Changing Workforce (NSCW)

in the U.S. and the German Socio-Economic Panel (GSOEP) which contain data on how many

hours individuals work as well as how many hours they would ideally like to work. We document

a considerable discrepancy between these two variables: on average across the population,

ideal hours of work is XX% (YY%) different from their actual hours of work in the NSCW

(GSOEP). Next, we leverage the panel nature of the GSOEP to estimate the Hicksian elasticity

of ideal hours with respect to the after-tax wage rate using tax variation in the 1990s using a

difference-in-difference strategy similar to Gruber and Saez (2002) and Kopczuk (2005). While

our estimates of this elasticity are noisy, the point estimates are consistent across specifications

(≈ 0.13) and, most importantly, every specification can reject the hypothesis that the ideal

hours elasticity is larger than one.1 We then put these pieces together to compute the cost of

adjustment frictions. We find that average WTP to remove hours frictions is around 20% of

income in the NSCW and GSOEP if the elasticity of ideal hours is 0.13; if this elasticity is 1

then the average WTP to remove hours frictions is 7% (4%) in the NSCW (GSOEP). Hence,

the first key empirical takeaway is that the cost of adjustment frictions is relatively large for

any reasonable value of the ideal hours elasticity.

The next section of the paper shows how to recover the cost of adjustment frictions in more

general settings. In particular, we show how our analysis can be extended to allow for an

additional unobservable labor supply decision (effort per hour), many hours worked decisions

(e.g., multiple earners per household), and dynamic decision making environments with savings

as well as endogenous and stochastic wage growth. There are two high-level takeaways: (1) we

can still recover the cost of adjustment frictions using ideal hours, actual hours, and elasticities

(although some of these more complex models require additional elasticities beyond just the

Hicksian elasticity of ideal hours) and (2) empirically, the cost of adjustment frictions is still

relatively large even accounting for these additional complexities.

Next, we consider the cost of misperception frictions, focusing specifically on misperceptions

of the tax schedule. We first show how to recover the cumulative cost of adjustment frictions

and misperceptions using data on ideal hours, actual hours, the size of tax misperceptions, and

1To the best of our knowledge, no paper has attempted to estimate the ideal hours elasticity (i.e., the hours
elasticity in absence of frictions). However, several papers (e.g., Kleven and Waseem (2013), Gelber et al. (2020),
Tazhitdinova (2020)) have estimated the frictionless earnings elasticity, which we typically expect to be larger
than the frictionless hours elasticity. These papers also find that the frictionless earnings elasticity is less than 1.
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the Hicksian elasticity of ideal hours. We then use data on ideal hours and actual hours from

the NSCW along with data on the size of tax misperceptions from Rees-Jones and Taubinsky

(2020) to estimate the cumulative cost of adjustment frictions and tax misperceptions. There

are two findings. First, adjustment frictions contribute far more to the cumulative cost of

frictions than do misperceptions of the tax schedule for any reasonable value of the Hicksian

ideal hours elasticity. Second, while the cost of adjustment frictions decreases with the Hicksian

ideal hours elasticity (because higher elasticities imply less curvature in utility), the cost of

tax misperceptions actually increases with the Hicksian ideal hours elasticity (because people

change their behavioral more in response to misperceptions). As a result, we find that the

cumulative cost of adjustment frictions and misperceptions is at least 10% of income regardless

of the value of the Hicksian ideal hours elasticity.

We are certainly not the first paper to explore the impacts of labor market frictions. A

number of papers have proposed that adjustment costs and hours constraints have important

impacts of labor market outcomes (e.g. Cogan (1981), Ham (1982), Altonji and Paxson (1988),

Dickens and Lundberg (1993a)). More recently, a number of papers have documented the

presence of labor market frictions and illustrated the consequent fiscal impacts (Chetty et al.

(2011), Chetty et al. (2013b), Chetty et al. (2013a), and Kleven and Waseem (2013)); how-

ever fewer papers have attempted to explore the welfare costs of these frictions. Much of the

recent investigation into the cost of frictions comes from (a lack of) bunching at kink points

in tax schedules. For example, Søgaard (2019) uses bunching evidence to estimate the cost of

adjustment frictions for Danish students, finding a cost of optimization frictions around 2-3%

of income. Gelber et al. (2020) estimate the size of adjustment cost frictions using changes in

bunching in the context of the Social Security Earnings Test, finding that adjustment costs are

around 0.5-2% of mean earnings. Gudgeon and Trenkle (2024) apply this same method to a tax

notch in Germany, finding an average cost of adjustment cost of €400-500, which is around 1%

of household income. In terms of the costs of misperceptions, Rees-Jones and Taubinsky (2020)

find that the welfare cost of tax misperceptions is around 0.5% of income.

Relative to previous work, our first contribution is methodological: we develop a framework

to estimate the cost of frictions that places few assumptions on the functional form of utility and

can accommodate many different sorts of frictions (discrete choice sets, adjustment costs, de-

mand side constraints, search costs, and misperceptions). Moreover, we show that our approach

can be extended to incorporate many realisms (heterogeneous effort per hour, joint labor supply

decisions, and dynamic decision making environments). Previous work has typically focused on

estimating the cost of a specific type of friction (e.g., adjustment costs or limited choice sets

or misperceptions) and typically makes stronger functional form assumptions (i.e., quasi-linear
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iso-elastic utility).

Our theoretical results illustrate the importance of attempting to account for many sources of

frictions simultaneously: the cost of frictions grows quadratically with the deviation from optimal

hours induced by frictions. Hence, three different frictions (e.g., adjustment costs, discrete

choice sets, and misperceptions) which each lead to successive 1% deviations from optimal

hours generate a cumulative cost of frictions that is 9 times as large as each of these frictions

individually. While previous papers (e.g., Gelber et al. (2020), Gudgeon and Trenkle (2024),

Chetty (2012), Rees-Jones and Taubinsky (2020)) all illustrate particular types of frictions that

generate a cost valued at ≈ 1% of income, we find that the cumulative cost of adjustment

frictions and tax misperceptions is closer to 10% of income.

From a policy perspective, our core finding that labor market frictions are substantial sug-

gest that there may be considerable value in policy reforms that reduce these frictions. For

example, understanding the cost of frictions is crucial for evaluating (1) laws and regulations

that increase the availability of gig work, (2) regulations that impose fixed costs on firms (e.g.,

benefit mandates for individuals who work a certain amount or compliance costs that scale with

the number of workers but not amount worked by each worker), (3) proposals for government

employment guarantees, (4) laws on paid-time-off, or (5) initiatives that improve tax salience.

Secondarily, this paper also contributes to the literature on estimating structural parameters

in the presence of frictions (e.g., Chetty (2012), Kleven and Waseem (2013), Gelber et al. (2020),

Gudgeon and Trenkle (2024), Tazhitdinova (2020)). In addition to estimating a frictionless

hours elasticity in the context of German tax reforms in the 1990’s (which is noisy but almost

certainly less than 1), we also illustrate how our work can be combined with the insights of

Chetty (2012) to set-identify structural (frictionless) elasticities from reduced from estimates.

Precisely, our methodology provides a way to estimate the cost of frictions, which is an input

into the bounding exercise of Chetty (2012) (which has previously just been assumed rather

than estimated). Combining these two methodologies, we show that because our estimated cost

of frictions is so substantial, that almost any structural elasticity can be consistent with any

observed elasticity. In other words, because we estimate such a large cost of frictions, we can

not learn much about the structural labor supply elasticity from the observed elasticity using

the methodology of Chetty (2012).2

Finally, in the interest of transparency, our methodology has three key downsides relative

to prior work: (1) we estimate a second order approximation for the cost of frictions which

can be inaccurate for individuals with very large frictions (we mitigate this issue by capping

2Note, this strengthens the overall message of Chetty (2012) that one can reconcile seemingly disparate
elasticity estimates in the presence of frictions.
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the cost of frictions using revealed preference bounds, but it is nonetheless a limitation), (2)

our analysis only estimates frictions for employed individuals (we would need counterfactual

wages to apply our results for unemployed individuals) and (3) our approach inherently relies

on (unincentivized) survey data because we need estimates of ideal hours; this is an important

limitation compared to other approaches (e.g., Gelber et al. (2020)) which can be applied with

administrative data.

2 Adjustment Frictions Theory

Our goal is to understand how much worse off individuals are as a result of their actual labor

supply deviating from their ideal labor supply due to frictions. We will separately analyze the

impacts of two different kinds of frictions: adjustment frictions and misperceptions of the tax

schedule. Adjustment frictions should be thought of as constraints which prohibit individuals

from supplying their ideal amount of labor but are not related to misperceptions. For instance,

limited choice sets arising from demand side constraints, search costs, and fixed costs of changing

jobs would all fall under our broad definition of adjustment frictions.

2.1 Adjustment Frictions in a Baseline Labor Supply Model

We begin with a standard labor supply model in which individuals have preferences over con-

sumption, c, and hours worked, h. Individuals have a smooth utility function:

u(c, h)

Agents face a (potentially) non-linear tax schedule T (wh) where w is their hourly wage:

c = wh− T (wh) (1)

To begin with, we assume that agents correctly perceive the tax schedule; we discuss how the

results change with misperceptions in Section 5. Let h∗ denote the solution which maximizes

u(c, h) subject to the budget constraint, Equation (1); we will refer to h∗ as “ideal hours”.

However, suppose that agents face some sorts of adjustment frictions. For instance, perhaps

agents maximize u(c, h) s.t. Equation (1) and the additional constraint that h ∈ HF where

HF denotes some limited choice set. Or agents maximize uF (c, h) = u(c, h) − κ1[h ̸= h̃]

s.t. Equation (1) where κ denotes a fixed cost that agents must pay to deviate from a status

quo hours h̃. As a result of adjustment frictions, the agent ends up supplying hF hours and

thus consumes c(hF ) = whF − T (whF ); we will refer to hF as “observed hours”. We are

interested in understanding the cost of these adjustment frictions. Precisely, we will be interested

in estimating the parameter δ(hF ) which represents the willingness-to-pay (WTP) to remove
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frictions defined implicitly by the following expression:

u(c(hF ) + δ(hF ), hF ) = u(c(h∗), h∗) (2)

δ(hF ) is the amount of money required to compensate an individual for frictions which prevent

them from choosing their optimal hours, h∗. Henceforth, we will refer to δ(hF ) as the “cost

of frictions” and/or the “WTP to remove frictions”, recognizing that δ(hF ) is a money-metric.

First, we will show how to (approximately) measure δ(hF ) in terms of two objects: the percent-

age difference between hF and h∗ as well as the compensated elasticity of ideal (i.e., frictionless)

hours. Towards this end, let us explore how δ(h) changes with h as hours worked moves away

from h∗ by applying the implicit function theorem to Equation (2) to calculate:

dδ

dh

∣∣∣∣
h∗

= −uc(c(h
∗), h∗)w(1− T ′(wh∗)) + uh(c(h

∗), h∗)

uc(c(h∗), h∗)
= 0 (3)

where the second equality follows from the FOC which is satisfied at h∗ assuming T (wh) is

differentiable at h∗. Equation (3) is a consequence of the envelope theorem and tells us that

it is not costly for agents to experience frictions that move them infinitesimally far away from

their optimal choice of hours. As a result of Equation (3), we can use the fundamental theorem

of calculus twice to deduce:

δ(h) =

∫ h

h∗

dδ

dh
(s)ds =

∫ h

h∗

∫ s

h∗

d2δ

dh2
(t)dtds (4)

Hence, in order to understand the cost of frictions, we require an estimate of the second deriva-

tive of frictions as we move away from h∗. Applying the implicit function theorem to Equation

(3), we can get an expression for d2δ
dh2

∣∣
h∗ (see Appendix A.1 for the proof):

d2δ

dh2

∣∣∣∣
h∗

= −uccw
2(1− T ′)2 − ucw

2T ′′ + 2uchw(1− T ′) + uhh
uc

(5)

Note that the (strict) second order condition for optimality of h∗ requires that uccw
2(1−T ′)2−

ucw
2T ′′+2uchw(1−T ′)+uhh < 0 so that d2δ

dh2

∣∣
h∗ > 0. Equation 5 tells us that d2δ

dh2

∣∣
h∗ is equal to

the curvature in u(wh−T (wh), h) w.r.t. h divided by the marginal utility of consumption. We

will now show that d2δ
dh2

∣∣
h∗ can be expressed in terms of the Hicksian elasticity of ideal hours of

work w.r.t. the tax rate, denoted ξh∗ . When faced with a linear tax schedule ξh∗ is the elasticity

of h∗ w.r.t. the keep rate holding utility constant: ξh∗ ≡ ∂h∗

∂(1−T ′)
1−T ′

h∗ |u (we define this elasticity

more generally when agents face a non-linear tax schedule in the proof of Lemma 1 in Appendix

A.2). We have:

Lemma 1. d2δ
dh2 |h∗ is related to the Hicksian ideal hours elasticity ξh∗ via:

d2δ

dh2

∣∣∣∣
h∗

=
w(1− T ′)

ξh∗h∗
(6)

Lemma 1 tells us that d2δ
dh2 |h∗ , which equals the curvature in u(wh − T (wh), h) w.r.t. h
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divided by marginal utility of consumption, is inversely proportional to the Hicksian labor

supply elasticity. The intuition is that utility functions with higher curvature must generate

smaller elasticities because people have a stronger preference to choose a given hours worked

and are therefore less willing to change their hours substantially with the tax rate. This brings

us to our first result:

Proposition 1. Suppose that d3δ
dh3 ≈ 0. The WTP to remove frictions expressed as a fraction

of optimal income wh∗ can be approximated as:

δ(hF )

wh∗
≈ (1− T ′(wh∗))

(
hF−h∗

h∗

)2
2ξh∗

(7)

Proof. Starting from Equation (4), using the assumption that d3δ
dh3 ≈ 0 so that d2δ

dh2 is roughly

constant at w(1−T ′)
ξh∗h∗ by Lemma 1 between h∗ and h yields:

δ(hF ) =

∫ hF

h∗

∫ s

h∗

d2δ

dh2
(t)dtds ≈

∫ hF

h∗

∫ s

h∗

w(1− T ′)

ξh∗h∗
dtds

=

∫ hF

h∗

w(1− T ′)

ξh∗h∗
(s− h∗)ds =

w(1− T ′)

2ξh∗h∗
(hF − h∗)2

Hence, one can recover an estimate of the cost of frictions with an estimate of the Hicksian

elasticity of ideal hours with respect to the tax rate, ξh∗ , along with the extent to which observed

hours deviate from ideal hours in percentage terms: hF−h∗

h∗ . Proposition 1 captures the idea

that costs of deviation from an optimum are a function of the second derivatives of utility as

discussed in Akerlof and Yellen (1985) or Mankiw (1985). Proposition 1 is conceptually the same

as Lemma 1 from Chetty (2012) with the additions that Proposition 1 allows for non-linear tax

schedules and non-quasilinear utility. Proposition 1 should thus be viewed as a baseline for

recovering the cost of frictions; the primary theoretical contribution of the present paper is to

illustrate how the logic of Proposition 1 can be extended to much more general settings (Sections

4 and 5) as well as how to mitigate errors arising from the fact that Proposition 1 relies on a

second order approximation.

2.2 Bounds on Cost of Frictions

One important assumption embedded in Proposition 1 is that the third derivative of frictions is

small d3δ
dh3 ≈ 0. What can we say about the cost of frictions if d3δ

dh3 ̸≈ 0? Suppose that d3δ
dh3 ̸≈ 0 but

that d4δ
dh4 ≈ 0. It is straight-forward to show (via identical fundamental theorem of calculus logic

as in Proposition 1) that a third-order approximation for the cost of frictions can be computed

as:
δ(hF )

wh∗
≈ (1− T ′(wh∗))

(
hF−h∗

h∗

)2
2ξh∗

+ (h∗)3
d3δ

dh3

∣∣∣∣
h∗

(
hF − h∗

h∗

)3/
6
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Hence, if d3δ
dh3 ̸≈ 0 and individuals face large frictions so that

(
hF−h∗

h∗

)3
is big, then the ap-

proximation in Proposition 1 can incorrectly characterize the cost of frictions. While one could

theoretically use estimates of (h∗)3 d3δ
dh3

∣∣
h∗ (and analogous) higher order terms to sharpen the

estimates of δ(hF ), these higher order terms are functions of elasticities of elasticities, which

are exceedingly difficult to estimate in practice (Kleven, 2016). Instead, we now illustrate how

one can bound the cost of frictions using a revealed preference argument (see Appendix A.3 for

proof):

Proposition 2. Suppose individuals always have the choice to not work. The willingness-to-pay

to remove frictions is bounded by:

δ(hF )

wh∗
<

wh∗ − T (wh∗)− [whF − T (whF )]

wh∗
for h∗ > h (8)

δ(hF )

wh∗
<

wh∗ − T (wh∗) + T (0)

wh∗
for h∗ < h (9)

as long as dδ
dh(h) < 0 ∀ h < h∗.3

Intuitively, for individuals who would ideally like to work more than they currently do

(h∗ > hF ), the cost of frictions is bounded above by the gain in income generated from moving

from hF to h∗ because labor supply is costly. Similarly, for individuals who would ideally like to

work less than they currently do (h∗ < hF ), the cost of frictions is bounded above by the cost

of moving to unemployment from h∗, which is in turn bounded above by the consumption loss

of moving to unemployment from h∗. While the bounds of Proposition 2 are coarse, they are

valid even when frictions are very large (and hence Proposition 1 may be inaccurate if d3δ
dh3 ̸≈ 0).

3 Empirical Size of Adjustment Frictions

Next, we will attempt to apply Proposition 1 empirically to assess the size of adjustment fric-

tions. There are three elements that we will need to assess the magnitude of adjustment frictions:

(1) how many hours individuals actually work in the presence of adjustment frictions, hF , (2)

how many hours individuals would ideally like to work in absence of adjustment frictions h∗,

and (3) the Hicksian elasticity of ideal hours h∗ w.r.t. the tax rate. We will begin by discussing

two datasets which have information on hF and h∗: the U.S. National Study of the Changing

Workforce and the German Socio-Economic Panel. Each of these two datasets has strengths

and weaknesses relative to the other.

3The condition that dδ
dh

(h) < 0 ∀ h < h∗ just means that the WTP to remove frictions is increasing as h gets
farther away from h∗. This is loosely equivalent to utility u(c(h), h) being single-peaked in h. This condition
always holds, for example, if u(c, h) is quasi-linear in c so that u(c, h) = c − v(h) with convex v(h) and linear
taxes as in this case:

c(h) + δ(h)− v(h) = c(h∗)− v(h∗)

dδ

dh
(h) = v′(h)− c′(h) = v′(h)− (1− T ′)w

v′(h∗)− (1− T ′)w = 0 by the FOC so v′(h)− (1− T ′)w < 0 ∀h < h∗ by convexity of v(·).
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3.1 Data on h and h∗

National Study of Changing Workforce (NSCW): The NSCW is a repeated cross-

sectional survey conducted by The Families and Work Institute in 1992, 1997, 2002, and 2008.

The survey contains a wide number of questions related to employment and demographics. For

our purposes, we will use information on wages w and actual hours worked per week in the

(potential) presence of frictions, hF . Most importantly, the survey also contains a measure of

ideal hours worked per week, h∗, taken from the answer to the question “If you could do what

you wanted to do, ideally how many hours, in total, would you like to work each week?” In using

this measure to assess adjustment frictions, it is important to consider how respondents may

interpret this question. First and foremost, given the question’s wording, we may be concerned

that individuals do not take into account the financial cost of working less. While only 5.1% of

respondents answered 0, some respondents could in theory respond by stating how many hours

they think they could reasonably work while getting paid the same amount. Additionally, some

individuals may respond by answering how much they would like to work in an ideal world

in which their life situation was different above and beyond removing adjustment frictions; for

instance, one might interpret an “ideal” world as one in which childcare was cheaper and there-

fore they would be able to work more. Fortunately, the NSCW contains an additional question

in 2008 that asks, “Why don’t you work fewer (more) hours per week?”. Table ?? in Appendix

?? provides the distribution of responses to the above questions. Of the households who report

that they would prefer to work less, around 48% state that the reason they do not in fact work

less is because they need the money (suggesting they did not interpret the initial question on

ideal hours as being about adjustment frictions).4 Around 5% of individuals who would ideally

like to work more say they do not work more due to childcare or other constraints that cannot

be reasonably considered adjustment frictions. While we will provide estimates of adjustment

frictions for the entire sample in Appendix ?? (assuming that everyone answered the question

about ideal hours as being solely about removing adjustment frictions), our main estimates

of adjustment frictions will exclude individuals who misinterpreted the initial question about

ideal hours, illustrated by responding to the above question with one of the following responses

“[ENTER RESPONSES HERE]”.5 Figure 1a presents a binscatter of how ideal hours varies

with actual hours in the NSCW and Figure 11a in Appendix D shows the distributions of hF

4However, if individuals face limited choices of hours (e.g., a discrete choice between full-time and part-time),
then they may interpret this question as effectively asking why they do not work part-time (rather than why
they don’t work their ideal hours) at which point saying they “need the money” does not necessarily imply that
their answer to the question on ideal hours ignored financial costs of working less.

5The remaining sample is therefore representative if we assume that the dropped individuals would face the
same distribution of frictions as the rest of the sample if they correctly interpreted the question. We also illustrate
an even more conservative scenario which assumes that adjustment frictions are zero (i.e., h∗ = hF ) if individuals
incorrectly interpret the question about ideal hours.
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and h∗ in the NSCW. Note that there is a strong relationship between actual and ideal hours;

moreover workers who work fewer hours, on average, would like to work more and workers who

work many hours, on average, would like to work less. [NICK: Nick, please fill in any missing

hyperlinks/questions if possible.]

German Socio-Economic Panel (GSOEP): The GSOEP is a longitudinal survey of ap-

proximately 15,000 private households, representative of the German population, conducted by

the Deutsches Institut für Wirtschaftsforschung since 1984. In addition to collecting informa-

tion on hourly wages w and hours worked (possibly in the presence of frictions) hF , we use the

answer to the following question to infer h∗: “If you could choose your ideal working hours,

taking into account your income would change according to the number of hours: How many

hours would you work?” We believe that this question is phrased in a manner which enables

easier interpretation of the answer as being related to adjustment frictions given that it explic-

itly states that income would go down with hours worked. We use the answer to this question

as our measure of ideal hours worked in the absence of adjustment frictions, h∗.6 Figure 1b

presents a binscatter of how ideal hours varies with actual hours in the GSOEP and Figure 11b

in Appendix D shows the distributions of h and h∗ in the GSOEP. As in the NSCW, there is a

strong relationship between actual and ideal hours; moreover workers who work few hours, on

average, would like to work more and workers who work many hours, on average, would like to

work less. [NICK: Please fill in any missing hyperlinks if possible.]

(a) NSCW (b) GSOEP

Figure 1: Actual vs Ideal Hours
Notes: Each dot in this graph represents the average number of actual hours and the average number
of ideal hours in each of the three surveys for a group of respondents. These averages are computed for
15 groups of respondents, ordered by their reported number of actual hours. The red line represents
the best linear predictor of ideal hours based on actual working hours. The dashed blue line represents
the 45◦ line.

6There is not a question in the GSOEP that asks why people do not work their ideal hours.
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3.2 Estimating the Ideal Hours Elasticity

The final component we need to assess the size of frictions is the elasticity of ideal hours w.r.t.

the tax rate. While many papers have estimated elasticities of actual hours (and income) w.r.t.

tax changes, to the best of our knowledge, no paper has estimated the impact of tax changes

on ideal hours worked, which is the relevant elasticity for understanding the cost of adjustment

frictions. We now attempt to estimate this parameter using the GSOEP and variation from

German tax reforms in the 1990s.7 The variation in tax rates is discussed and depicted in

Appendix B.2.

Our empirical strategy will explore how changes in ideal hours worked between pairs of

years relates to tax changes between the same pairs of years for given individuals. We label the

two years 1 and 2; following Feldstein (1999) and Gruber and Saez (2002), the length of time

between “year 1” and “year 2” will be three years in our baseline specifications although we will

show robustness to this time length. We use data on ideal hours worked from the GSOEP for

years between 1991-2001, which comprises a 5 year window on either side of a large tax reform

in 1996. Hence, our dataset will consist of stacked three year differences between years 1991

and 1994, 1992 and 1995, etc.8

The vast majority of previous papers that have analyzed behavioral responses to tax reforms

have explored changes to piecewise linear tax schedules. In contrast, the German tax schedule

is a non-linear (quadratic) function. Hence, we need to derive a slightly different estimating

equation (relative to prior empirical work) that accounts for the non-linearities in the tax

schedule. We show in Appendix B.3 how to derive the following discretized Slutsky-esque

equation to recover the Hicksian ideal hours elasticity, ξh∗ , for non-linear reforms:

∆ log(h∗)i = ξh∗∆ log(1− T ′(wh∗))i + ηh∗∆ log(wh∗ − T (wh∗))i + νi (10)

where i denotes an individual, ∆ log(1 − T ′(wh∗))i = [log(1 − T ′
2(w1h

∗
1)) − log(1 − T ′

1(w1h
∗
1))]i

represents the mechanical change in marginal tax rates between years 1 and 2 for individual i,

∆ log(wh∗−T (wh∗))i = [log(w1h
∗
1−T2(w1h

∗
1))−log(w1h

∗
1−T1(w1h

∗
1))]i represents the mechanical

change in after tax income between years 1 and 2 for individual i, and ν represents an error

term. The subscripts 1 and 2 represent values in year 1 and year 2, respectively.

There are two points to discuss. First, the terms ∆ log(1 − T ′(wh∗))i and ∆ log(wh∗ −

T (wh∗))i in Equation (10) represent mechanical changes in the keep-rate and after-tax-income

holding ideal hours (and therefore ideal income) constant at year 1 level. Previous papers

(e.g., Gruber and Saez (2002) or Kopczuk (2005)) that have estimated similar specifications to

7We cannot estimate this elasticity in the U.S. using the NSCW because the NSCW is not a panel dataset.
8Unfortunately, the GSOEP did not collect data on ideal hours worked in 1996 so we can not include the 1993

to 1996 and 1996 to 1999 differences in our regressions.
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Equation (10) have typically included the actual changes in the keep-rate and after-tax-income

and instrumented for these changes with the mechanical changes that would have ensued if

there were no behavioral effects. Using these simulated instruments is of course not a problem

from an econometric standpoint, but for the purposes of recovering the parameter ξh∗ , theory

tells us that we should not use the mechanical changes in taxes as simulated instruments and

instead use them directly as regressors when the tax schedule is non-linear.9

Second, estimating Equation (10) will yield an unbiased estimate of ξh∗ assuming that

changes in marginal tax rates are assigned (as good as) randomly so νi ⊥ ∆ log(1− T ′(wh∗))i.

In practice, tax changes are not randomly assigned: the (mechanical) change experienced in

both the marginal tax rate and tax liability from a reform is determined by one’s income level

in year 1. Hence, the key threat to identification is that ∆ log(h∗)i is correlated with (w1h
∗
1)i:

this may occur, for instance, due to differential trends in h∗ across the income distribution.

We employ the solution commonly adopted in previous papers (e.g., Gruber and Saez (2002)),

which is to control flexibly for income in year 1. Our estimating equation is as follows where

f(w1h
∗
1)i is a flexible function of year 1 income, Y earj denote base year dummies, and incomes

are adjusted for inflation:

∆ log(h∗)i = ξh∗∆ log(1− T ′(wh∗))i + ηh∗∆ log(wh∗ − T (wh∗))i + f(w1h
∗
1)i + Y earj + νi (11)

Table 1 shows results from estimating Equation (11).10 All specifications (other than Column

7) restrict to households with a single earner to abstract from joint household labor supply

decisions. Robustness exercises are performed in Columns 2-9 and are detailed in the table

notes. As can be seen, our estimate for ξh∗ is imprecisely estimated. The baseline estimate in

Column (1) is 0.13 with a 95% CI of [-0.21,0.47]. The point-estimates are fairly stable but noisy

across all specifications. Importantly however, across all specifications, the 95% confidence

intervals can rule out very large elasticities, with the upper limits of these confidence intervals

all being less than 1; moreover, in all columns except Column (6), upper limits are less than 0.5.

Thus, in the next section, we will show how the size of adjustment frictions varies for values of

ξh∗ ∈ (0, 1].11

9When the initial tax schedule is linear (or piecewise linear) as in Gruber and Saez (2002) or Kopczuk (2005),
then using the mechanical change in marginal tax rates as a simulated instrument or directly as a regressor is
equivalent conditional on the assumption that individuals move smoothly in response to tax schedules (which is
used to derive the Slutsky equation in the first place). If individuals stay within the same tax bracket then their
mechanical change in marginal tax rates is equivalent to their actual change in marginal tax rates even after
behavioral responses, meaning that theoretically the R2 from the first stage should be 1. When the tax schedule
is non-linear, as in our setting, these are not theoretically equivalent due to a non-zero second derivative of the
tax schedule.

10For comparison with prior studies, we also show regressions estimated using actual hours worked and income
as the dependent variable: see Table 2 and Table 3 in Appendix D.1, respectively. While both are imprecisely
estimated, the point estimates are consistent with those in the literature: the actual hours (income) elasticity is
0.04 (0.26) in our baseline specification.

11ξh∗ > 0 if marginal utility of consumption is positive and second order conditions hold (see Equation (25)).

12



Finally, while to the best of our knowledge no paper has attempted to estimate the ideal

hours elasticity, several papers have estimated the earnings elasticity in absence of frictions

(often referred to as the structural earnings elasticity), such as Kleven and Waseem (2013),

Gelber et al. (2020), Tazhitdinova (2020). To do so, these papers have utilized bunching masses

at notches and/or kinks in the income tax schedule along with functional form assumptions

on the form of frictions. These papers all find that structural elasticities are larger than those

estimated with frictions12; however, they also find fairly small structural earnings elasticities

with values substantially lower than 1 (Chetty et al. (2011) also suggest this structural elasticity

is less than 1). Given we expect hours elasticities to be less than earnings elasticities (both with

and without frictions), this supports ξh∗ < 1.

Table 1: Estimates of the Ideal Hours Worked Elasticity w.r.t. the Marginal Tax Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline Cubic Linear Time Trends <50th Singles All Hhs 2 Yr Diff 4 Yr Diff

ξh∗ 0.16 0.10 0.14 0.15 0.13 0.38 0.13 0.04 0.13
( 0.16) ( 0.15) ( 0.15) ( 0.16) ( 0.17) ( 0.24) ( 0.14) ( 0.11) ( 0.13)

ηh∗ 0.06 -0.02 0.19 0.09 0.23 0.27 0.14 0.11 0.13
( 0.35) ( 0.33) ( 0.32) ( 0.36) ( 0.50) ( 0.52) ( 0.31) ( 0.24) ( 0.32)

Obs. 2,830 2,845 2,845 2,830 1,690 1,599 3,940 4,067 1,952

Notes: Standard errors are clustered at the household level and are presented in parentheses. Each
column presents estimates of ξh∗ and ηh∗ from regression (11) where the dependent variable is the
change in log ideal hours worked for individual i, ∆ log h∗

it. Columns (1)-(7) use 3 year differences while
Columns (8) and (9) use 2 and 4 year differences, respectively. All regressions are for years 1991-2001
inclusive (note, we do not have ideal hours for 1996), include year dummies, a married dummy, and
restrict to individuals for whom marital status did not change over the pair years. All regressions are
weighted using household survey weights. Column (1), (4), (5), (6), (7) include a spline in lagged log
household income (i.e., lagged income decile dummies interacted with lagged income); Column (4) also
includes lagged income interacted with a linear time trend. Instead of a spline, Column (2) includes a
cubic polynomial in lagged log household income while Column (3) includes a linear polynomial in lagged
log household income. All columns except (6) and (7) restrict to single-earner households. Column (6)
restricts to single individuals only. Column (7) includes both single- and dual-earner households and the
dependent variable for Column (7) is wage weighted ideal hours ∆ log(wih

∗
it +wjh

∗
jt) where j represents

the second earner (if there is one) and the wages are equal to wages in time period t−3. This specification
thus estimates ξz∗ , which is the relevant parameter for bounding the cost of frictions for multi-earner
households in Proposition 5. Finally, Column (5) restricts to households with lagged household income
below the 50th percentile.

3.3 Cost of Adjustment Frictions

Next, we put all of the pieces together: we use the values of hF−h∗

h∗ from the GSOEP and NSCW

datasets combined with our range of estimates of the ideal hours elasticity from the previous

section to estimate the cost of adjustment frictions from Proposition 1. As discussed in Section

2.2, for individuals with very large frictions, the second order approximation of the cost of

frictions from Proposition 1 can be off; hence, we use the bounds from Proposition 2 to cap the

12We too find that the ideal hours elasticity is higher than the actual hours elasticity (our baseline actual hours
elasticity is 0.08 - see Table 2 Column 1 - whereas our baseline ideal hours elasticity is 0.16); however, we do not
have precision to say that these elasticities are statistically different.
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cost of frictions derived from Proposition 1.13 Importantly, our analysis only estimates frictions

for employed individuals: all of our results require us to know the hourly wage w and this is

not easily observable for unemployed individuals.14 To begin with, we restrict our analysis to

households with a single earner; we will address joint labor supply decisions in Section 4.2.1.

Because our estimates of the Hicksian elasticity of ideal hours w.r.t. the marginal tax rate are

imprecisely estimated, Figure 2 first illustrates how the mean and median cost of adjustment

frictions (as a fraction of ideal income wh∗) varies with the elasticity of ideal hours w.r.t. the

tax rate, showing the range of elasticities that are within the 95% CI of any of the various

specifications that we consider.15

[WD: Nick, let’s modify Figure 3 to include a black dotted vertical line for the elasticity

value we get from our baseline specification and then perhaps have the whole region within our

95% CI from our baseline specification be in like light gray.]
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Figure 2: δ(hF )
wh∗ vs. ξh∗

Notes: This figure plots the average and median cost of adjustment frictions (as a fraction of ideal income)
for single-earners for different values of the ideal hours elasticity, ξh∗ , using data on ideal hours, h∗ and actual
hours worked, hF , from the NSCW (left) and the GSOEP (right). For all individuals, the cost of adjustment
frictions are calculated via Proposition 1; if the value from this calculation exceeds the revealed preference
bounds in Proposition 2, the bounds are applied.

Next, we illustrate the distribution of adjustment frictions as well as how adjustment frictions

vary across the income distribution. Figure 3 illustrates histograms of the cost of adjustment

frictions δ(hF )
wh∗ for the NSCW and the GSOEP assuming the value of ξh∗ = 0.13 from our

baseline specification. First, in both the NSCW and the GSOEP we see that there is a large

13To explore the extent to which our second order approximation of the cost of frictions accurately gauges
frictions, we illustrate in Figure 14 in Appendix D a comparison with exact calculation of frictions assuming quasi-
linear isoelastic (QLIE) utility. Average frictions calculated using the second order approximation of Proposition
1 (and capped with Proposition 2) are to those calculated with the QLIE utility specification; our method appears
to slightly underestimate frictions relative to the QLIE specification.

14Mas and Pallais (2019) implements a field experiment to elicit the value of employment for unemployed
individuals, which can be used to recover a cost of frictions for the unemployed.

15Figure 12 in Appendix D illustrates that the takeaways are almost entirely unchanged if we instead consider
mean and median cost of adjustment frictions as a fraction of actual income wh.
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fraction of people with no adjustment frictions (i.e., those with ideal hours equal to their actual

hours) and the density is mostly monotonically decreasing. In the U.S., the average (median)

individual would pay XX% (YY%) of their income to remove adjustment frictions whereas in

Germany the average (median) individual would pay XX% (YY%) of their income to remove

adjustment frictions assuming ξh∗ = 0.13. Figure 3 also illustrates how the size of adjustment

frictions, δ, varies with (actual) income. In the U.S., we see that there is no clear relationship

between the cost of adjustment frictions and income: while the average low income person would

prefer to work more and the average high income person would prefer to work less, the cost of

these frictions as a percentage of their income is not systematically different across the income

distribution. In contrast, in Germany, we find a much starker relationship between δ(hF )/(wh∗)

and income: low income individuals face the largest frictions and then medium and high income

individuals face roughly constant frictions.

(a) NSCW δ(hF )/(wh∗) Histogram (b) GSOEP δ(hF )
wh∗ Histogram

(c) NSCW Income vs δ(hF )
wh∗ (d) GSOEP Income vs δ(hF )/(wh∗)

Figure 3: WTP to Remove Frictions, δ(hF )
wh∗ , as a Proportion of Income

Notes: Panels a and b show our measure of the WTP to remove frictions as a proportion of net-of-tax

income, δ(hF )
wh∗ , as described in Proposition 1. Panels c and d show binscatter plots of δ(hF )

wh∗ vs. actual
income (in 2021 U.S. dollars). The red and green dashed vertical lines indicate the the meam and the

median values of δ(hF )
wh∗ .
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4 Extensions

We now discuss how we can relax various implicit assumptions in Proposition 1 to understand

the cost of frictions in more general environments.

4.1 Effort Per Hour Decisions (Endogenous Wages)

The model in Section 2.1 assumes that the only labor supply decision that individuals is how

many hours to work. We show how to recover the cost of frictions in a world with two labor

supply decisions: hours worked and effort per hour.16 Hence, in this model hourly wage rate

are a choice variable. This second margin of adjustment can (theoretically) allow households to

mitigate the cost of hours frictions by adjusting their effort per hour.

Consider the following labor supply model in which individuals have preferences over con-

sumption, c, hours worked, h, and effort per hour, e. Individuals have a smooth utility function

u(c, h, e) and face some non-linear tax schedule T (whe) where where w is their effort wage:

c = whe− T (whe) (12)

We are now interested in understanding the cost of frictions, δ(hF , eF ). δ(hF , eF ) is the amount

of money required to compensate an individual for frictions which require them to work (hF , eF )

instead of their optimal choice (h∗, e∗):

u(c(hF , eF ) + δ(hF , eF ), hF , eF ) = u(c(h∗, e∗), h∗, e∗) (13)

Proposition 3 (proved in Appendix A.6) establishes that we can recover δ(hF , eF ) in terms of

h∗, hF , and observable elasticities:

Proposition 3. Suppose that there are no frictions in choosing effort per hour and let χz,h

represent the elasticity of observed income with respect to observed hours holding ideal hours

fixed. Then a second order approximation for the cost of frictions is given by:

δ(hF , eF )

wh∗e∗
≈ (1− T ′(wh∗e∗))

χz,h

2ξh∗

(
hF − h∗

h∗

)2

(14)

Note, the expression for δ(hF ,eF )
wh∗e∗ from Proposition 3 is strikingly similar to the expression

for δ(hF )
wh∗ from Proposition 1: the only difference is that there is one extra term which captures

the impacts of effort decisions on income. Note that χz,h is equal to 1 if there is no effort

decision so that Proposition 3 actually nests Proposition 1 as a special case. The core intuition

is that, under the assumption that effort is chosen without frictions, we can infer how effort

would change in absence of hours frictions via the parameter χz,h which captures how effort

16Examples of higher effort per hour (which lead to higher income) might be an Uber driver taking fewer breaks
and thereby completing more trips per hour or a salaried worker increasing their effort to get a higher year-end
bonus or promotion.
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changes with exogenous changes in hours worked.

4.1.1 Calculating Cost of Frictions with Endogenous Wages

Using data from the NSCW and GSOEP, we explore how our estimates of the cost of frictions

change if we incorporate endogenous wages as in Proposition 3. We repeat the exercise from

Section 3.3 illustrating how the average and median cost of frictions varies with ξh∗ . First, we

need an estimate of χz,h = ∂ log(whe(h))
∂ log(h)

∣∣
h∗ . This parameter reflects how income varies if hours

worked changes exogenously due to frictions. Fortunately, a number of papers have estimated

this parameter. Pencavel (2015) uses variation in hours worked for munitions workers in World

War II to estimate the relationship between productivity and hours worked, estimating an

average value of χz,h = 0.8 (see their Table 3) and Collewet and Sauermann (2017) use exogenous

variation in hours worked in call centers to estimate a value of χz,h ∈ [0.8, 0.9] (see their Table

3 which estimates χz,h − 1 to be between 0.11 and 0.18 depending on specification).

Putting the pieces together, we form estimates for the cost of frictions in the NSCW and

GSOEP from Proposition 3 setting χz,h = 0.8. To limit inaccuracies from the second order

approximations from Proposition 3 when
(
hF−h∗

h∗

)
is large, we construct bounds for the value

of frictions with endogenous wages analogously to Proposition 2: see Proposition 9 in Appendix

B.1. Ultimately, accounting for effort decisions lowers mean frictions in the population by around

11% in the NSCW and 15% in the GSOEP (when ξh∗ = 0.13); see Figure 4 in Appendix D.17

The takeaway is that even if households can reduce the cost of hours frictions by substituting

to supplying more effort per hour, the size of this effect empirically (measured by χz,h) is not

large enough to drastically reduce our estimated cost of adjustment frictions.

[WD: Eventually, this figure will go to Appendix; I’ve left it here for consistency of the

numbering that I sent to Nick.]

17Note, the value of χz,h does not change the estimated cost of frictions exactly proportionally (as to be
expected from Proposition 3) because the bounds used to cap the estimated size of frictions in Proposition 9 are
related in a non-linear way to the size of χz,h.
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Figure 4: δ(hF )
wh∗ vs. ξh∗

Notes: This figure plots the average and median cost of adjustment frictions (as a fraction of ideal income)
for single-earners for different values of the ideal hours elasticity, ξh∗ , using data on ideal hours, h∗ and actual
hours worked, hF , from the NSCW (left) and the GSOEP (right). For all individuals, the cost of adjustment
frictions are calculated via Proposition 3 assuming a value of χz,h = 1 (see blue and orange lines; these are
the same as Figure 2) and χz,h = 0.8 (see green and red lines); if the value from this calculation exceeds the
revealed preference bounds in Proposition 9, the bounds are applied.

4.2 Many Hours Worked Choices

The model in Section 2.1 assumed that there was only one hours worked decision. However,

in reality, there are situations in which households make many labor supply decisions. For

instance, one may consider (1) households where both spouses work, (2) households where a

single individual works multiple jobs, or (3) households with a single individual that chooses how

much to work throughout different portions of the day/week/year and has different disutility

of work done during different periods of time. Appendix A.4 proves the following Proposition,

showing that one can recover an estimate of the cost of frictions with many labor supply choices

as long as one can observe the Slutsky matrix of own and cross-price elasticities of each ideal

hours choice with respect to the after-tax wage:

Proposition 4. One can construct a second order approximation for the cost of frictions with

many labor supply choices via the Slutsky matrix of own-price and cross-price compensated

elasticities:
∂h∗

1
∂((1−T ′

1)w1)
(1−T ′

1)w1

h∗
1

|C
∂h∗

2
∂((1−T ′

1)w1)
(1−T ′

1)w1

h∗
2

|C . . .

...
. . .

...

∂h∗
1

∂((1−T ′
m)wm)

(1−T ′
m)wm

h∗
1

|C . . . ∂h∗
m

∂((1−T ′
m)wm)

(1−T ′
m)wm

h∗
m

|C


The key takeaway from Proposition 4 is that in order to recover the cost of frictions with many

choices of hours worked, one needs the entire Slutsky matrix of ideal hours elasticities with

respect to the (after-tax) wage rate of the given hours choice as well as with respect to the

(after-tax) wage rate of all of the other hours choices. In some situations this may be feasible.

For instance, in a model of spousal labor supply choices, one would need exogenous variation
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in (after-tax) wage rates separately for each spouse; this could be estimated with a tax reform

in a country where couples are taxed individually rather than jointly. In other situations,

however, recovering the full Slutsky matrix is almost certainly impossible. For instance, for an

individual choosing how many hours to work on different days of the week, one would require

separate variation in after-tax wage rates for each day of the week, which seems difficult to find

quasi-experimentally.

Arguably, a more useful result is the following Proposition which establishes that the logic of

Proposition 1 can be used to provide a lower bound for the cost of frictions for households with

multiple hours worked decisions using only a single elasticity of ideal income with respect to the

tax rate. We denote the vector of labor supply decisions as h and the cost of frictions as δ(hF )

and assume that taxes are a function solely of total income z =
∑

iwihi where zF ≡
∑

iwih
F
i

denotes observed income chosen with frictions and z∗ ≡
∑

iwih
∗
i denotes ideal income:

Proposition 5. Suppose that the third derivatives of δ(h) ≈ 0 and that utility is additively

separable between c and h. A lower bound for the cost of frictions expressed as a fraction of

optimal income is given by:

δ(hF )

z∗
≥
(
1− T ′ (z∗)

) ( zF−z∗

z∗

)2
2ξz∗

where ξz∗ represents the Hicksian elasticity of z∗ with respect to the marginal tax rate.

The intuition behind Proposition 5 (see the proof in Appendix A.5) is that the Hicksian

elasticity of frictionless income z∗ informs the curvature of utility with respect to ideal income

assuming households optimize their labor supply decisions conditional on earning a given income

(that is, assuming each hi is chosen optimally subject to earning a total amount
∑

iwihi). Given

that households who earn some amount zF may not be optimizing each individual labor supply

decision conditional on their earnings level, this forms a lower bound for the cost of frictions.

In other words, Proposition 5 captures the cost of frictions which cause a household to deviate

from frictionless income but does not capture the cost of frictions which lead to a sub-optimal

allocation of hours worked given a total income level.

4.2.1 Calculating Cost of Frictions for Dual-Earner Households

We now apply the results from the previous section to recover the cost of frictions for households

with two earners (recall that our results in Section 3 were exclusively for households with a single

earner). The NSCW only surveyed a single member of each household and therefore did not

collect data on the ideal hours of work for both spouses; hence, all of the analysis in this section

will only use the GSOEP. First, we implement Proposition 5 to recover a lower bound for the

size of frictions for couples; Figure 5 in Appendix D shows how the lower bound estimate for the

average and median size of frictions for two earner households varies with the parameter ξz∗ .
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When ξz∗ = 0.13 (our point estimate of the ideal income elasticity from Column (7) of Table

1), the mean (median) WTP to remove adjustment frictions is 9% (3%) of pre-tax income.
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Figure 5: Lower Bound on δ(hF )
z∗ for Dual-Earner Households

Notes: This figure plots a lower bound for the average and median cost of adjustment frictions (as a
fraction of ideal income) for dual-earner households for different values of the ideal income elasticity,
ξz∗ , using data on ideal hours, h∗, and actual hours worked, hF , from the GSOEP. For all households,
the lower bound for the cost of adjustment frictions are calculated via Proposition 5; if this household
lower bound exceeds that of the combined individual revealed preference bounds from Proposition 2,
the household lower bound is replaced with the combined individual revealed preference bounds.

4.3 Dynamic Extension

In this section, we show how Proposition 1 extends to a dynamic setting. We consider a recursive

formulation with two state variables: the wage in period t, wt, and the individual’s wealth level

in period t, κt. There are two choice variables in each time period: how many hours to work

ht and how much to save σt subject to an interest rate rt. Furthermore, we account for “career

concerns” by allowing wt+1 to be a function of ht. There may also be randomness in future

wages or interest rates or preferences in the future. The individual’s problem can be written as:

max
ht

{
max
σt

u(wtht − Tt(wtht)− σt, ht) +E[V (wt+1(ht), κt + rtσt)]

}
(15)

Let us suppose that either there are no frictions in σt or that σt is at a corner solution and does

not change with ht (e.g., due to borrowing constraints). Let σ∗
t (ht) denote the optimal level of

savings for a given level of hours worked. Let us define δ(hFt ) as the WTP to remove frictions

in hours worked in time period t:

u(wth
F
t − Tt(wth

F
t )− σ∗

t (h
F
t ) + δ(hFt ), h

F
t ) +E[V (wt+1(h

F
t ), κt + σ∗

t (h
F
t ))]

= u(wth
∗
t − Tt(wth

∗
t )− σ∗

t (h
∗
t ), h

∗
t ) +E[V (wt+1(h

∗
t ), κt + σ∗

t (h
∗
t ))]

(16)

In Appendix A.7 we prove the following Proposition which establishes that with the properly

defined elasticity, Proposition 1 still holds:
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Proposition 6. Suppose that d3δ
dh3

t
≈ 0. The WTP to remove frictions expressed as a fraction

of optimal income wth
∗
t can be approximated as:

δ(hFt )

wth∗t
≈ (1− T ′

t(wth
∗
t ))

(
hF
t −h∗

t
h∗
t

)2
2ξh∗

t

(17)

where ξh∗
t
is the compensated elasticity of ideal hours in time period t w.r.t. the tax rate in time

period t holding all future tax rates constant.

There are a few things to note regarding Proposition 6. First, we do not assume anything

about the continuation utility function V (wt+1, κt + σt). In particular, there may be frictions

in future choices of labor supply or future savings; hence, Proposition 6 recovers the cost of

hours frictions in time period t conditional on future frictions. Second, the elasticity required,

ξh∗
t
, captures the compensated change in ideal hours in time period t for a change in marginal

tax rates in period t, holding constant all future tax rates. Hence, this elasticity is potentially

difficult to estimate empirically not only because one requires data on ideal hours but also

because one requires temporary variation in tax rates. Finally, let us discuss how Proposition 6

impacts the conclusions from Section 3. The relationships between the size of frictions and the

elasticity in Figure 2 still hold (if we interpret the x-axis as now representing ξh∗
t
); however, to the

extent that agents are not myopic, the elasticities estimated in Section 3.2 (which are estimated

using permanent rather than temporary tax changes) are no longer the relevant elasticities

for understanding the cost of frictions because these elasticities conflate hours changes today

that result due to tax changes today with increases in hours worked today that result from

tax changes in the future. The elasticities estimated in Section 3.2 are equal to ξh∗
t
used in

Proposition 6 if agents do not consider future tax changes when making labor supply decisions

today.

5 Tax Misperceptions

Next, we explore how misperceptions impact our estimates of the cost of frictions. There are two

key takeaways: (1) in the presence of misperceptions, the cost of adjustment friction estimates

from Section 3 should be interpreted as the cost of frictions conditional on misperceptions, and

(2) we can incorporate misperceptions of the tax schedule into a total cost of frictions inclusive

of adjustment frictions - this exercise suggests that the costs of adjustment frictions are much

larger than tax misperceptions and that the cumulative cost of frictions is large regardless of

the value of the Hicksian elasticity.

5.1 Adjustment Frictions with Misperceptions

First, note that Proposition 1 does not require that the tax schedule in question is the true tax

schedule. If the true tax schedule is given by T (wh) but agents misperceive the tax schedule
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as T̂ (wh), then we can replace T with T̂ in Proposition 1 and interpret h∗ as ideal hours

conditional on misperceptions to recover the WTP to remove adjustment frictions conditional on

misperceptions of the tax schedule.18 Hence, our results from Section 3 should all be interpreted

as how much individuals would be willing to pay to remove frictions conditional on existing

misperceptions of the tax schedule.19 The caveat is that when individuals misperceive the tax

schedule, the relevant elasticity for Proposition 1 is now the Hicksian elasticity of ideal hours

with respect to the perceived marginal tax rate holding the perceived tax level constant. Hence,

unless individuals misperceive the existing tax schedule yet correctly perceive tax reforms, the

elasticity estimates from Section 3.2 will no longer be relevant (but the relationships between the

size of frictions and this unknown elasticity in Section 3 are otherwise still valid if interpreted

as costs conditional on misperceptions).

5.2 Cost of Adjustment Frictions and Misperceptions

But what if we want to estimate the cumulative ex-post cost of both adjustment frictions and tax

misperceptions? Going back to the baseline model of Proposition 1, suppose that an individual

works hF hours given their misperceptions of the tax schedule and their adjustment frictions.

Let h∗ denote ideal hours conditional on tax misperceptions (i.e., without any adjustment

frictions). And let us denote h∗∗ as the ideal hours this individual would like to work if they

faced neither adjustment frictions nor tax misperceptions. Proposition 1 can be applied to

recover the cumulative cost of frictions with the caveat that the relevant elasticity is now ξh∗∗ ,

the Hicksian elasticity of h∗∗ w.r.t. the marginal tax rate if the tax schedule was correctly

perceived:
δ(hF )

wh∗∗
≈ (1− T ′(wh∗∗))

(
hF−h∗∗

h∗∗

)2
2ξh∗∗

(18)

Let us first discuss how we might recover h∗∗ so as to gauge the cumulative cost of frictions.

First, let us assume that we have an estimate of h∗, which represents how many hours an indi-

vidual would like to work in absence of adjustment frictions but conditional on misperceptions

(this is presumably what one recovers from a survey such as the NSCW or GSOEP). So how can

we recover h∗∗ from an estimate of h∗? Using the discrete approximation to the Slutsky-esque

in Equation (10), the following characterizes (approximately) how ideal hours worked changes

with the perceived tax schedule:

log(h∗)− log(h∗∗) ≈ ξh∗∗ [log(1− T̂ ′(wh∗∗))− log(1− T ′(wh∗∗))]

+ ηh∗∗ [log(wh∗∗ − T̂ (wh∗∗))− log(wh∗∗ − T (wh∗∗))]
(19)

18In the terminology of the behavioral economics literature, we will recover the ex ante WTP to remove
adjustment frictions under the decision utility function u(wh − T̂ (wh), h) rather than the ex post WTP to
remove adjustment frictions under the experience utility function u(wh− T (wh), h).

19Moreover, to the extent that individuals misperceive other elements of the environment, such as their utility
function or their wage, the results from Section 3 should be interpreted as capturing the WTP to remove frictions
conditional on these frictions as well.
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where ξh∗∗ is the elasticity of ideal hours worked w.r.t. the marginal tax rate evaluated at h∗∗

and ηh∗∗ is the elasticity of ideal hours with respect to the after-tax income evaluated at h∗∗.

Combining Equations (18) and (19) yields:

Proposition 7. Suppose that d3δ
dh3 ≈ 0. The WTP to remove frictions expressed as a fraction

of optimal income wh∗∗ can be approximated as:

δ(hF )

wh∗∗
≈ (1− T ′(wh∗∗))

hF−h∗
[
1−T ′(wh∗∗)
1−T̂ ′(wh∗∗)

]ξh∗∗ [whF−T (wh∗∗)
whF−T̂ (wh∗∗)

]ηh∗∗
h∗

[
1−T ′(wh∗∗)
1−T̂ ′(wh∗∗)

]ξh∗∗ [whF−T (wh∗∗)
whF−T̂ (wh∗∗)

]ηh∗∗
2

2ξh∗∗
(20)

The key takeaway from Proposition 7 is that when there are both adjustment frictions

and misperceptions, the relationship between the cost of frictions and ξh∗∗ is now theoretically

ambiguous. Intuitively, larger values of ξh∗∗ still imply that there is less curvature in utility (so

that the cost of frictions is smaller) but they now also imply that individuals may have larger

deviations from their optimal hours worked due to misperceptions (because people are more

responsive to tax misperceptions). Hence, as ξh∗∗ increases, the cost of adjustment frictions

goes down but the cost of misperceptions may increase.

5.3 Data on Misperceptions

In order to gauge the impact of tax misperceptions via Proposition 7, we need data on the

size of misperceptions in both the marginal tax rate and tax liability. For this purpose we use

estimates of tax misperceptions from Rees-Jones and Taubinsky (2020) (RJT). RJT conducted

an incentivized survey with a representative sample of 4,197 U.S. taxpayers to elicit perceptions

of the U.S. income tax schedule. The survey asks respondents to assess the tax liability at their

own income and at 16 other income levels.20 Hence, the RJT survey provides data on individuals’

perceptions of their own perceived tax liability T̂ and allows us to infer their perceptions about

marginal tax rates from their misperceptions about how perceived tax liability is changing with

income. Precisely, we will use their perceived tax liability at the farthest income level that’s

in the same tax bracket to infer their perceived marginal tax rate (see Appendix B.4 for more

discussion). Figure 6 plots binscatters of perceived marginal tax rates vs. actual marginal tax

rates and perceived tax liability vs. actual tax liability. There are strong positive correlations

between perceptions and actuality in both cases. Individuals with lower marginal rates tend to

over-estimate their marginal rates while individuals with higher marginal rates tend to under-

estimate their marginal rates. Most individuals seem to over-estimate their tax liability.

20Respondents are asked to assess the tax liability for a fictional taxpayer “Fred” with income level zF , but
otherwise identical to themselves. Participants were informed they may receive a monetary compensation if their
answers are within $100 of the true tax liability.
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(a) Actual vs Perceived Mg Tax Rates (b) Actual vs Perceived Tax Liability

Figure 6: Actual and Perceived Taxes
Notes: Each bin indicates the average actual marginal tax rate (actual tax liability) against the
average perceived marginal tax rate (perceived tax liability) in Panel a (b). These averages are
computed for 10 groups of respondents ordered by their actual marginal tax rates (actual tax liability).
The red line represents the best linear predictor of perceived marginal tax rates (perceived tax liability)
given the actual marginal tax rate (actual tax liability). The dashed blue line represents the 45-degree
line.

5.4 Estimating Cumulative Cost of Frictions

To understand the cumulative cost of adjustment frictions and tax misperceptions via Proposi-

tion 7 we need data on both hF and h∗ along with the size of tax misperceptions. Given that

we do not have data on all of these objects in the same dataset, we “join” the NSCW data

and the RJT data in order to roughly gauge the combined cost of adjustment frictions and tax

misperceptions. We now describe this data “join”.

We start with the NSCW dataset from 2008 which has data on hF and h∗ (recall h∗ represents

ideal income without adjustment frictions but with misperceptions). For each individual, we

calculate their rank in the income distribution from 1 to 100. Similarly, in the RJT data, which

has information on T̂ ′ and T̂ , we calculate each individuals rank in the income distribution from

1 to 100. Next, we perform a “join” of these two datasets, matching all pairs of observations

with the same income percentile to create a synthetic dataset of both adjustment frictions and

tax misperceptions. There are two modestly heroic assumptions that we implicitly make when

performing this exercise: (1) the distribution of tax misperceptions conditional on income rank

has not changed from the 2008 NSCW to the RJT survey conducted in YYYY, and (2) the size

of tax misperceptions is independent of the size of adjustment frictions conditional on income

rank. Under these two assumptions, the distribution of tax misperceptions faced by individuals

at each income rank in the NSCW is exactly the distribution of tax misperceptions in the RJT

dataset; in this case, the joined dataset accurately captures the joint distribution of adjustment

frictions and tax misperceptions.

With this joined dataset, we can apply Proposition 7 to gauge the cumulative cost of ad-
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justment frictions and tax misperceptions (applying Proposition 2 with h∗ replaced by h∗∗ to

cap second order approximations from Proposition 7). Figure 7 displays how the mean and

median size of frictions from this exercise vary with the size of the unknown parameter ξh∗∗ ; for

comparison, Figure 7 also shows the cost of frictions assuming there are no misperceptions as in

Figure 2a.21 22 There are two key takeaways. First, for small values of ξh∗∗ , the cumulative cost

of adjustment frictions and misperceptions is not overly different from the cost of adjustment

frictions on their own ignoring misperceptions. Intuitively, when ξh∗∗ is small, individuals do

not change their behavior substantially in response to misperceptions (see Equation (19)) so

that the cost of misperceptions is small. Overall, adjustment frictions seem to be substantially

more costly than tax misperceptions: we perform a decomposition exercise in Appendix B.5

which shows that adjustment frictions contribute 90% (80%) of the cumulative cost of frictions

even when ξh∗∗ = 0.6 (ξh∗∗ = 1). The second takeaway, however, is that the cost of adjustment

frictions and the cost of misperceptions move in opposite directions with ξh∗∗ . Loosely, as ξh∗∗

becomes larger, adjustment frictions get smaller (because there is less curvature in utility) but

tax misperceptions lead to larger and larger deviations from ideal hours worked, creating larger

costs of tax misperceptions. Hence, the cumulative cost of frictions appears large no matter the

value of ξh∗∗ .23

21We assume that there are no income effects so that η = 0; Figure 13 in Appendix D shows a corresponding
plot when η = −0.5. When η ̸= 0, the cost of frictions is slightly larger (regardless of whether η < 0 or η > 0).

22To simplify computations, we assume that individuals’ misperceptions of their marginal tax rate at their
ideal income level are equal to their misperceptions at their actual income level so that log(1 − T̂ ′(wh∗∗)) −
log(1 − T ′(wh∗∗)) = log(1 − T̂ ′(wh)) − log(1 − T ′(wh)) and log(wh∗∗ − T̂ (wh∗∗)) − log(wh∗∗ − T (wh∗∗)) =
log(wh − T̂ (wh)) − log(wh − T (wh)). In other words, we assume wh∗∗ is in the same perceived tax bracket as
whF .

23While we do not have individual level data on the size of misperceptions in Germany, Appendix B.6 explores
the cumulative cost of frictions in the GSOEP under the assumption that all individuals misperceive their average
tax rate as their marginal tax rate as suggested in De Bartolome (1995) or Rees-Jones and Taubinsky (2020).
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Figure 7: Cumulative Cost of Frictions
Notes: This figure illustrates the cumulative cost of frictions as a fraction of ideal income wh∗ ac-
counting for both adjustment frictions and misperceptions. Estimates of the cost of frictions are
computed via Propositions 7 and 2. For comparison, we also display the cost of adjustment frictions
without misperceptions (or, equivalently, the cost of adjustment frictions conditional on mispercep-
tions) computed via Propositions 1 and 2.

6 Relationship to Chetty (2012)

The methodological contribution of the present paper is to illustrate how to use data on ideal

and actual hours worked along with the structural elasticity of ideal hours worked to recover

the WTP to remove frictions. In contrast, Chetty (2012) illustrates how to use reduced form

elasticities (estimated in the presence of frictions) as well as an assumption about the maximum

size of frictions to place bounds on the value of the structural elasticity. We now briefly discuss

what we can learn about structural elasticities by combining these two approaches.

At a high level, Chetty (2012) shows that one can place bounds on the structural elasticity

ξh∗∗ using the estimated reduced form value of ξ̂hF = ∂hF

∂(1−T ′)
1−T ′

hF |u and the maximum value of

frictions agents are ever subject to δ̄ (see his Proposition 1):

ξh∗∗ ∈ [ξLh∗∗(ξ̂hF , δ̄), ξUh∗∗(ξ̂hF , δ̄)]

where ξLh∗∗(ξ̂hF , δ̄) and ξUh∗∗(ξ̂hF , δ̄) are implicitly defined by:

ξ̂hF = ξLh∗∗(ξ̂hF , δ̄) + 2
(2ξLh∗∗(ξ̂hF , δ̄)δ̄)1/2

∆ log(1− T ′)

ξ̂hF = ξUh∗∗(ξ̂hF , δ̄)− 2
(2ξUh∗∗(ξ̂hF , δ̄)δ̄)1/2

∆ log(1− T ′)

where ∆ log(1− T ′) is the variation in tax rates used to identify ξ̂hF .

Our results show how to construct an estimate of δ̄ from data on hF−h∗∗

h∗∗ across the population

and the value of ξh∗∗ . Taken together, this leads to an implicit formulation for the set identi-
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fication of ξh∗∗ using (1) an estimate ξ̂hF and (2) data on the size of hours frictions, hF−h∗∗

h∗∗ .

Letting δ̄
(
ξh∗∗ ;

{
hF−h∗∗

h∗∗

})
represent the maximum size of frictions given an elasticity ξh∗∗ and

a set of data on
{

hF−h∗∗

h∗∗

}
across the population:

Proposition 8.

ξh∗∗ ∈
[
ξLh∗∗

(
ξ̂hF , δ̄

(
ξh∗∗ ;

{
hF − h∗∗

h∗∗

}))
, ξUh∗∗

(
ξ̂hF , δ̄

(
ξh∗∗ ;

{
hF − h∗∗

h∗∗

}))]
(21)

Essentially, Proposition 8 extends Proposition 1 of Chetty (2012) to endogenize the value of δ̄.

To illustrate what we can learn about the structural labor supply elasticity ξh∗∗ from Equa-

tion (21), suppose we want to know what values of ξh∗∗ are consistent with a given value of ξ̂hF .

We can perform the following procedure. Assume a value of ξh∗∗ and then use Proposition 7

along with Proposition 2 (replacing h∗ with h∗∗) to construct estimates for the size of δ(hF ) for

each individual and then take the 99th percentile (to remove extreme outliers) of δ(hF ) in the

population to construct a measure of δ̄. Given this value of δ̄ and ξ̂hF , see if Equation (21) is

satisfied. If so, then ξh∗∗ is consistent with ξ̂hF . Iterate over all values of ξh∗∗ to identify all such

ξh∗∗ consistent with ξ̂hF . We illustrate the results of this procedure in Figure ?? which shows

the set of ξh∗∗ consistent with various values of ξ̂hF given estimates of the costs of frictions from

Propositions 7 and 2:

[WD: Let’s also do this with say the average value of δ and show its still enormous. Nick

please add these figures when you can.]

7 Conclusion

This paper has developed a framework to estimate the cost of labor market frictions using data

on ideal and actual hours of work along with the elasticity of ideal hours worked w.r.t. the

tax rate. We have also shown how to extend this framework to account for endogenous wages,

multiple labor supply decisions, dynamic decision making environments, and misperceptions

of the tax schedule. Empirically, the core finding is that the cost of hours frictions is large:

individuals would be willing to pay at least 10% of their income on average to remove frictions

in hours worked. Moving forward, we think that this research has direct applicability for the

desirability of policies aimed at reducing frictions. For instance, our findings suggest that

increasing the availability of gig work, reducing fixed costs of hiring employees (which generate

demand side frictions), and jobs guarantees may all be beneficial to reduce the substantial

welfare costs of frictions. More work investigating how these sorts of policies mitigate the cost

of frictions is certainly warranted.
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A Appendix: Proofs

A.1 Proof of Equation (5)

Proof. Applying the implicit function theorem to Equation (3):

d2δ

dh2
∣∣
h∗uc(c(h

∗), h∗)+
duc(c(h), h)

dh

∣∣∣∣
h∗

dδ

dh

∣∣
h∗+

d [uc(c(h) + δ(h), h)w(1− T ′(wh)) + uh(c(h), h)]

dh

∣∣
h∗ = 0

Recognizing that dδ
dh

∣∣
h∗ = 0 and

duc(c(h), h)w(1− T ′(wh)) + uh(c(h), h)

dh

∣∣∣∣
h∗

= ucc(c(h
∗), h∗)w2(1− T ′(wh∗))2 − uc(c(h

∗), h∗)w2T ′′(wh∗)

+ 2uch(c(h
∗), h∗)w(1− T ′(wh∗)) + uhh(c(h

∗), h∗)

(22)

yields Equation (5) (omitting function arguments, noting everything is evaluated at h∗).
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A.2 Proof of Lemma 1

We first need to define the Hicksian elasticity when faced with a non-linear tax schedule as in

Jacquet et al. (2013). First, consider how agents would respond if they faced no frictions to a

non-linear tax change from T (wh) to T (wh)+µτ(wh) (for some smooth perturbation direction

τ(wh)). For an individual where T ′(wh∗) + µτ ′(wh∗) exists at their optimal income level h∗,

their FOC w.r.t. h under the perturbed tax schedule reads:

uc(wh
∗−T (wh∗)−µτ(wh∗), h∗)w(1−T ′(wh∗)−µτ ′(wh∗))+uh(wh

∗−T (wh∗)−µτ(wh∗), h∗) = 0

(23)

For individuals with a unique optimal h∗ whose second order condition holds strictly, we can

use the implicit function theorem to describe how their optimal income changes with µ for any

τ(z). Differentiating Equation (23) with respect to µ and evaluating at µ = 0 yields:

∂h∗

∂µ
=

ucwτ
′(z∗) + uccw(1− T ′)τ(z∗) + uchτ(z

∗)

uccw2(1− T ′)2 − ucw2T ′′ + 2uchw(1− T ′) + uhh

=
ucw

d2u︸︷︷︸
Substitution Effect

τ ′(z∗) +
uccw(1− T ′) + uch

d2u︸ ︷︷ ︸
Income Effect

τ(z∗)
(24)

where d2u ≡ uccw
2(1 − T ′)2 − ucw

2T ′′ + 2uchw(1 − T ′) + uhh represents the second (total)

derivative of utility with respect to h. Equation (24) is essentially a non-linear version of the

Slutsky equation and decomposes the behavioral impact of an arbitrary, non-linear tax change

into the substitution effect of a change in the marginal tax rate (holding the tax level constant),

and the income effect of a change in the tax level (holding the marginal tax rate constant).

Dividing both sides by h∗, we can rewrite Equation (24) as:

∂ log(h∗)

∂µ
=

ucw

−d2u

1− T ′(wh∗)

h∗︸ ︷︷ ︸
Substitution Elasticity, ξh∗

−τ ′(wh∗)

1− T ′(wh∗)
+

wh∗ − T (wh∗)

h∗
uccw(1− T ′) + uch

−d2u︸ ︷︷ ︸
Income Elasticity, ηh∗

−τ(wh∗)

wh∗ − T (wh∗)

(25)

Equation (25) tells us that the behavioral impacts of small tax changes to a non-linear tax

schedule can be decomposed as a substitution elasticity ξh∗ multiplied by the percentage change

in the keep rate (i.e., one minus the marginal tax rate) at optimal income wh∗ as −τ ′(wh∗)
1−T ′(wh∗) =

∂ log(1−T ′(wh∗)−µτ ′(wh∗))
∂µ |µ=0, and an income elasticity parameter ηh∗ multiplied by the percentage

change in after tax income at optimal income wh∗ as −τ(z∗)
z∗−T (z∗) = ∂ log(wh∗−T (wh∗)−µτ(wh∗))

∂µ |µ=0.

Because ξh∗ is the elasticity of frictionless hours worked with respect to the marginal tax rate

holding the tax level constant, this is a Hicksian elasticity.24

Finally, using d2u ≡ uccw
2(1 − T ′)2 − ucw

2T ′′ + 2uchw(1 − T ′) + uhh, the definition of ξh∗

24Changing marginal tax rates while holding the level of taxes paid constant is equivalent to changing marginal
tax rates while holding utility constant by the envelope theorem.
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from Equation (25), and Equation (5) yields the statement of the Lemma.

A.3 Proof of Proposition 2

Proof. For individuals for whom h∗ > hF , we have that:

u(c(h∗), hF )− u(c(h∗), h∗) > 0

given that labor is presumed costly. Given that by definition:

u(c(hF ) + δ(hF ), hF )− u(c(h∗), h∗) = 0

and
u(c(hF ), hF )− u(c(h∗), h∗) < 0

then the intermediate value theorem implies that δ(hF ) ∈ (0, c(h∗)−c(hF )) = (0, wh∗−T (wh∗)−

[whF − T (whF )]).

For individuals with h∗ < hF we have that:

u(c(h∗), 0)− u(c(h∗), h∗) > 0

given that labor is presumed costly. By definition:

u(c(0) + δ(0), 0)− u(c(h∗), h∗) = 0

and because u(c(0), 0) < u(c(hF ), hF ) by revealed preference as individuals are assumed to have

the choice to not work we have that:

u(c(0), 0)− u(c(h∗), h∗) < u(c(hF ), hF )− u(c(h∗), h∗) < 0

then the intermediate value theorem implies that δ(0) ∈ (0, c(h∗)− c(0)) = (0, wh∗ − T (wh∗)−

[0− T (0)]). By assumption dδ
dh(h) < 0 ∀ h < h∗ so that δ(0) > δ(hF ) as h > 0.

A.4 Proof of Proposition 4

We show that Proposition 1 can be generalized to settings when individuals make multiple

choices of hours worked (e.g., spousal labor supply) and consumption choices. Suppose that

individuals have m hours choices h1, h2, ..., hm each with wage w1, w2, ..., wm. We assume that

there is a linear tax rate T ′
i that applies to earnings from source i and that individuals have

some unearned income R.25 Suppose individuals have a smooth utility function. The budget

constraint for the individual is given by:

c = [(1− T ′
1)w1h1 + (1− T ′

2)w2h2 + ...+ (1− T ′
m)wmhm] +R

To condense notation a bit, less us denote the after-tax price of hours as: pi ≡ wi(1 − T ′
i ).

Defining c as a function of (h1, h2..., hm) ≡ h via c(h) = [p1h1 + p2h2 + ...+ pmhm] +R we are

25We assume that tax rates are constant solely to make the subsequent matrix expressions simpler but we can
allow for a non-linear tax schedule exactly as in Proposition 1.
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interested in the cost of frictions δ(hF ) defined as:

u(c(hF ) + δ(hF ), hF1 , ..., h
F
m) = u(c∗(h∗), h∗1, ..., h

∗
m)

where hF = (hF1 , h
F
2 , ..., h

F
m) denotes hours chosen under frictions. Identical fundamental theo-

rem of calculus arguments as in the proof to Proposition 1 can be used to show that a second

order approximation for δ(hF ) is given by:26

δ(hF ) ≈ 1

2
(hF − h∗)T

−H(h∗)

uc(h∗)
(hF − h∗) (26)

where H(h∗) is the Hessian matrix of u(c(h), h1, ..., hm) with respect to h = (h1, h2, ..., hm)

evaluated at h∗ = (h∗1, h
∗
2, ..., h

∗
m). Next, we establish that we can recover −H(h∗)

uc(h∗) from the

matrix of (observable) compensated elasticities.

Proof. The system of individual first order conditions expressed in matrix notation is (recog-

nizing that c = [p1h1 + p2h2 + ...+ pmhm] +R):

Uh1 ≡ uc([p1h
∗
1 + ...+ pmh∗m] +R, h∗1, ..., h

∗
m)p2 + uh1([p1h

∗
1 + ...+ pmh∗m] +R, h∗1, ..., h

∗
m) = 0

Uh2 ≡ uc([p1h
∗
1 + ...+ pmh∗m] +R, h∗1, ..., h

∗
m)p3 + uh2([p1h

∗
1 + ...+ pmh∗m] +R, h∗1, ..., h

∗
m) = 0

...

Uhm ≡ uc([p1h
∗
1 + ...+ pmh∗m] +R, h∗1, ..., h

∗
m)pm + uhm([p1h

∗
1 + ...+ pmh∗m] +R, h∗1, ..., h

∗
m) = 0

(27)

Let us apply the implicit function theorem to System (27) to compute the (uncompensated)

Slutsky matrix:
Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm




∂h∗
1

∂p1

∂h∗
1

∂p2
. . .

...
. . .

...

∂h∗
m

∂p1
. . . ∂h∗

m
∂pm

 = −


Uh1p1 Uh1p2 . . .

...
. . .

...

Uhmp1 . . . Uhmpm

 (28)

where Uhipj corresponds to the partial derivative of Uhi
with respect to pj . Note that H(h∗) is

given by:

H(h∗) =


Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm


To compute the income effect parameter vector, we also apply the implicit function theorem,

where UhiR is the partial derivative of Uhi
with respect to unearned income R:

Uh1h1 Uh1h2 . . .
...

. . .
...

Uhmh1 . . . Uhmhm




∂h∗
1

∂R
...

∂h∗
m

∂R

 = −


Uh1R

...

UhmR

 (29)

26Essentially, parametrize the line segment between hF and h∗, apply Proposition 1 for this single parameter
and then apply the multivariable chain rule; the proof is nearly identical to the proof of the the multivariable
version of Taylor’s Theorem.
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Next, we note that by direct computation one has the relationships:

Uhipi = uc + UhiRh
∗
i

Uhipj = UhiRh
∗
j

UhiR = uccpi + uchi

Thus, we get the usual Slutsky equations (in vector form) that state, for example:

1

h∗1



∂h∗
1

∂p1
|C

∂h∗
2

∂p1
|C
...

∂h∗
m

∂p1
|C

 ≡ 1

h∗1



∂h∗
1

∂p1
∂h∗

2
∂p1
...

∂h∗
m

∂p1

−



∂h∗
1

∂R

∂h∗
2

∂R
...

∂h∗
m

∂R

 = −


Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm


−1 

Uh1p1
h1

− Uh1R

...
Uhmp1

h1
− UhmR



= −


Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm


−1


uc
h∗
1

0
...

0



(30)

The left hand side is just the vector of compenstated (Hicksian) price effects. For clarity, the

corresponding equation for the compensated price effects with respect to p2 equals:

1

h∗2



∂h∗
1

∂p2
|C

∂h∗
2

∂p2
|C
...

∂h∗
m

∂p2
|C

 ≡ 1

h∗2



∂h∗
1

∂p2
∂h∗

2
∂p2
...

∂h∗
m

∂p2

−



∂h∗
1

∂R

∂h∗
2

∂R
...

∂h∗
m

∂R

 = −


Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm


−1


0

uc
h∗
2
...

0

 (31)

Next, consider the following matrix of compensated semi-elasticities (which are easily recover-

able from the matrix of elasticities):

A ≡


1
h∗
1



∂h∗
1

∂p1
|C

∂h∗
2

∂p1
|C
...

∂h∗
m

∂p1
|C


1
h∗
2



∂h∗
1

∂p2
|C

∂h∗
2

∂p2
|C
...

∂h∗
m

∂p2
|C

 . . . 1
h∗
m



∂h∗
1

∂pm
|C

∂h∗
2

∂pm
|C

...

∂h∗
m

∂pm
|C





= −


Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm


−1



uc
h∗
1

0 . . . 0

0 uc
h∗
2

. . . 0
...

...
. . .

...

0 0 . . . uc
h∗
m



(32)

Inverting both sides of the above equation:

A−1 = −



h∗
1

uc
0 . . . 0

0
h∗
2

uc
. . . 0

...
...

. . .
...

0 0 . . . h∗
m
uc



Uh1h1 Uh1h2 . . .

...
. . .

...

Uhmh1 . . . Uhmhm

 =


h∗1 0 . . . 0

0 h∗2 . . . 0
...

...
. . .

...

0 0 . . . h∗m


−H(h∗)

uc(h∗)
(33)
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Yielding:

−H(h∗)

uc(h∗)
=


h∗1 0 . . . 0

0 h∗2 . . . 0
...

...
. . .

...

0 0 . . . h∗m



−1 
1
h∗
1



∂h∗
1

∂p1
|C

∂h∗
2

∂p1
|C
...

∂h∗
m

∂p1
|C


1
h∗
2



∂h∗
1

∂p2
|C

∂h∗
2

∂p2
|C
...

∂h∗
m

∂p2
|C

 . . . 1
h∗
m



∂h∗
1

∂pm
|C

∂h∗
2

∂pm
|C

...

∂h∗
m

∂pm
|C





−1

(34)

Proposition 4 shows that we can recover the utility costs of frictions in substantially more

general settings as long as we can observe the matrix of compensated price effects. While this

is useful in situations where we can feasibly estimate the Slutsky matrix of all labor supply

decisions, the chief limitation of Proposition 4 is that it requires estimation of a large set of

statistics which may be difficult or impossible to estimate.

A.5 Proof of Proposition 5

This section will show how we can construct a lower bound for the value of frictions when house-

holds have many labor supply decisions using “aggregate” elasticities. Consider the following

labor supply model where household makes multiple labor supply decisions (h1, ..., hj) = h

which are converted into labor income via a production function z(h) =
∑

iwihi. Individuals

are taxed according to a schedule T (z). The household problem is thus:27

max
c,h

ũ(c,h)

s.t. c ≤ z(h)− T (z(h))

(35)

Towards constructing a lower bound for the cost of frictions, let us consider the following

two-stage maximization problem:

max
c,z

u(c, z)

s.t. c ≤ z − T (z)

(36)

with

u(c, z) = max
c,h

ũ(c,h)

s.t. c ≤ z − T (z) and z(h) = z

(37)

Next, let us define the cost of frictions δ(zF ) that lead households to earn income zF rather

than z∗ assuming that hours are chosen optimally via sub-problem (37):

u(c(zF ) + δ(zF ), zF ) = u(c(z∗), z∗)

27Note, if we can observe (and have exogenous variation in) the wages wi, then we could apply the multidi-
mensional procedure from Section 4.2 using the full set of (compensated) elasticities of all choice variables h with
respect to the full set of wages.

35



We can immediately apply Proposition 1 (simply replacing hF by zF everywhere) to recover an

approximation for δ(zF ) as long as d3δ
dz3

≈ 0:

δ(zF )

z∗
≈ (1− T ′(z∗))

(
zF−z∗

z∗

)2
2ξz∗

(38)

where ξz∗ is the elasticity of z∗ with respect to the marginal tax rate, defined analogously as in

Equation (25).

In actuality, individuals earning an income zF due to frictions may also be constrained so

that their hours choices conditional on an earnings level zF may be inferior to their conditional

optimum given by sub-problem (37). Intuitively, households may ideally prefer to earn the same

income zF with a different mix of labor supply. Hence, for any observed values of hF satisfying

z(hF ) = zF (and therefore c(hF ) = c(zF )) we will show that

δ(hF ) > δ(zF )

where
ũ(c(hF ) + δ(hF ),hF ) = ũ(c(h∗),h∗) = u(c(z∗), z∗)

as long as utility is additively separable with ũ(c,h) = ũ(1)(c) − ũ(2)(h). Under additive

separability:
δ(hF ) = ũ−1

(1)

[
u(c(z∗), z∗) + ũ(2)(h

F )
]
− c(hF )

δ(zF ) = ũ−1
(1)

[
u(c(z∗), z∗) + ũ(2)(h(z

F ))
]
− c(zF )

where h(zF ) represents h chosen according to sub-problem (37). Hence, disutility of labor is

greater under hF than h(zF ) so ũ(2)(h(z
F )) < ũ(2)(h

F ). Recognizing that c(hF ) = c(zF ) and

ũ−1
(1) is strictly increasing (as utility of consumption ũ(1) is strictly increasing) we have that

δ(hF ) > δ(zF ). Thus, we have the following lower bound for δ(hF ) (which holds with d3δ
dz3

≈ 0,

which in turn is implied by d3δ
dh3 ≈ 0 because the former is just a third directional derivative in

the direction of a particular vector h):

δ(hF ) > (1− T ′(z∗))

(
zF−z∗

z∗

)2
2ξz∗

(39)

A.6 Proof of Proposition 3

Towards showing how to (approximately) measure δ(hF , eF ) with the difference between hF

and h∗ and a set of observable elasticities, we will first establish the following Lemma:

Lemma 2. As long as all of the third derivatives of δ w.r.t. h and e are small then the WTP

to remove frictions expressed as a fraction of optimal income z∗ = wh∗e∗ can be approximated

as:

δ(hF , eF )

z∗
≈ − Uhh

z∗uc

(h∗)2

2

(
hF − h∗

h∗

)2

− Uee

z∗uc

(e∗)2

2

(
eF − e∗

e∗

)2

− Ueh

z∗uc
e∗h∗

eF − e∗

e∗
hF − h∗

h∗

(40)
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where Uhh, Uhe, and Uee are second derivatives of the utility function at the optimum (h∗, e∗):

Uhh = ucc[(1− T ′)we∗]2 − uc(we
∗)2T ′′ + 2uch(1− T ′)we∗ + uhh

Uhe = ucc(1− T ′)2w2e∗h∗ − ucw
2e∗h∗T ′′ + uce(1− T ′)we∗ + uch(1− T ′)wh∗ + uc(1− T ′)w+ uhe

Uee = ucc[(1− T ′)wh∗]2 − uc(wh
∗)2T ′′ + 2uce(1− T ′)wh∗ + uee

Proof. As in Section 2, let us first show how δ changes as h and e deviate from h∗ and e∗ by

applying the implicit function theorem to Equation (13) to calculate:

∂δ

∂h

∣∣
h∗,e∗

= −uc(c(h
∗, e∗), h∗, e∗)we∗(1− T ′) + uh(c(h

∗, e∗), h∗, e∗)

uc(c(h∗, e∗), h∗, e∗)
= 0 (41)

∂δ

∂e

∣∣
h∗,e∗

= −uc(c(h
∗, e∗), h∗, e∗)wh∗(1− T ′) + ue(c(h

∗, e∗), h∗, e∗)

uc(c(h∗, e∗), h∗, e∗)
= 0 (42)

where both expressions in Equations (41) and (42) equal 0 by the FOC w.r.t. h and e respectively

evaluated at h∗ and e∗. Or, more compactly:

uc
∂δ

∂h
+ Uh = 0 (43)

uc
∂δ

∂e
+ Ue = 0 (44)

Differentiating Equations (43) and (44) and using the fact that ∂δ
∂h

∣∣
h∗,e∗

= ∂δ
∂e

∣∣
h∗,e∗

= 0, we get

that: ∂2δ

∂h2
∣∣
h∗,e∗

= −Uhh

uc
(45)

∂2δ

∂e2
∣∣
h∗,e∗

= −Uee

uc
(46)

∂2δ

∂h∂e

∣∣
h∗,e∗

= −Ueh

uc
(47)

As a result of Equations (41) and (42), we can use the fundamental theorem of calculus twice

to deduce:

δ(hF , eF ) =

∫ hF

h∗

∂δ

∂h
(s, e∗)ds+

∫ eF

e∗

∂δ

∂e
(hF , s)ds

=

∫ hF

h∗

∫ s

h∗

∂2δ

∂h2
(t, e∗)dtds+

∫ eF

e∗

(∫ s

e∗

∂2δ

∂e2
(h∗, t)dt+

∫ hF

h∗

∂2δ

∂h∂e
(t, s)dt

)
ds

(48)

If third derivatives of δ are small then the second derivatives of δ are ≈ constant so that:

δ(hF , eF ) ≈ ∂2δ

∂h2

∣∣∣∣
h∗,e∗

∫ hF

h∗

∫ s

h∗
dtds+

∂2δ

∂e2

∣∣∣∣
h∗,e∗

∫ eF

e∗

∫ s

e∗
dtds+

∂2δ

∂h∂e

∣∣∣∣
h∗,e∗

∫ eF

e∗

∫ hF

h∗
dtds

= −Uhh

2uc

(
hF − h∗

)2 − Uee

2uc

(
eF − e∗

)2 − Ueh

uc
(eF − e∗)(hF − h∗)

(49)

Dividing Equation (49) by z∗ and multiplying the three terms by (h∗)2

(h∗)2 ,
(e∗)2

(e∗)2 , and
h∗e∗

h∗e∗ (respec-

tively) yields the statement of the Lemma.

Next, using Lemma 2, we can prove Proposition 3:

Proof. The first step is to find expressions for the ideal hours elasticity w.r.t. the marginal tax

rate, ξh∗ , in terms of second derivatives of the utility function. Let us first consider utility as a
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function of an arbitrary non-linear tax schedule perturbation τ(wh∗e∗):

u(wh∗e∗ − T (wh∗e∗)− ϵτ(wh∗e∗), h∗, e∗)

First, at the optimal bundle we know that the following two FOCs are satisfied (assuming the

tax schedule is differentiable):

uc(wh
∗e∗ − T (wh∗e∗)− ϵτ(wh∗e∗), h∗, e∗)[1− T ′(wh∗e∗)− ϵτ ′(wh∗e∗)]we∗

+ uh(wh
∗e∗ − T (wh∗e∗)− ϵτ(wh∗e∗), h∗, e∗) = 0

uc(wh
∗e∗ − T (wh∗e∗)− ϵτ(wh∗e∗), h∗, e∗)[1− T ′(wh∗e∗)− ϵτ ′(wh∗e∗)]wh∗

+ ue(wh
∗e∗ − T (wh∗e∗)− ϵτ(wh∗e∗), h∗, e∗) = 0

(50)

Next, let us apply the implicit function theorem to the FOCs in (50) to calculate how optimal

hours and optimal effort vary with an arbitrary tax reform in the direction of τ(z): ∂h∗

∂ϵ and

∂e∗

∂ϵ . Differentiating both equations w.r.t. ϵ and evaluating at ϵ = 0 We have (omitting function

arguments for brevity, noting that everything is evaluated at (h∗, e∗)):

− ucwe
∗τ ′ − ucc(1− T ′)we∗τ − uchτ + Uhh

∂h∗

∂ϵ
+ Uhe

∂e∗

∂ϵ
= 0

− ucwh
∗τ ′ − ucc(1− T ′)wh∗τ − uceτ + Ueh

∂h∗

∂ϵ
+ Uee

∂e∗

∂ϵ
= 0

(51)

In the Proposition we assumed that we can observe the elasticity of h∗ with respect to the

marginal net of tax rate holding the tax level constant. For an individual with optimal income

z∗ this corresponds to the tax perturbation τ(z) that decreases marginal rates at z∗ but leaves

the tax level unchanged: τ(z) = (z∗ − z) so that τ ′(z∗) = −1 and τ(z∗) = 0. So let us consider

this perturbation, denoting:
ξh∗ ≡ ∂h∗

∂ϵ

1− T ′

h∗

∣∣∣∣
τ(z)=(z∗−z)

ξe∗ ≡ ∂e∗

∂ϵ

1− T ′

e∗

∣∣∣∣
τ(z)=(z∗−z)

Hence, for the perturbation direction τ(z) = (z∗ − z) at z = z∗, we have:

ucwe
∗ + Uhh

h∗

1− T ′ ξh∗ + Uhe
e∗

1− T ′ ξe∗ = 0

ucwh
∗ + Ueh

h∗

1− T ′ ξh∗ + Uee
e∗

1− T ′ ξe∗ = 0

(52)

From here, multiply the first equation in (52) by h∗ and the second equation by e∗ then divide

both equations by z∗uc to yield:

1 +
Uhh

z∗uc

(h∗)2

1− T ′ ξh∗ +
Uhe

z∗uc

h∗e∗

1− T ′ ξe∗ = 0

1 +
Uhe

z∗uc

h∗e∗

1− T ′ ξh∗ +
Uee

z∗uc

(e∗)2

1− T ′ ξe∗ = 0

(53)

38



Solving Equation (53), we have the following expression for ξh∗ :

ξh∗ =

Uhe
z∗uc

h∗e∗

1−T ′ − Uee
z∗uc

(e∗)2

1−T ′

Uhh
z∗uc

(h∗)2

1−T ′
Uee
z∗uc

(e∗)2

1−T ′ −
[

Uhe
z∗uc

h∗e∗

1−T ′

]2 (54)

Next, we will utilize the assumption that effort is chosen without any frictions. Specifically,

we consider how the effort decision changes as hours change exogenously. First, the effort

decision e always satisfies the following FOC for any given exogenously determined h because

effort is chosen without any frictions:

uc(whe− T (whe), h, e)(1− T ′)wh+ ue(whe− T (whe), h, e) = 0

Applying the implicit function to the above FOC we have that:

de

dh
= −Uhe

Uee

or in terms of elasticities: d log(e)

d log(h)
=

de

dh

h

e
= −Uheh

Ueee
(55)

Thus, let us consider how how observed income changes with an exogenous shift in actual hours

h as we move away from h∗, holding w and T (·) (and therefore ideal hours h∗) constant:

χz,h ≡ d log(z)

d log(h)

∣∣∣∣
h∗

=
d log(we(h)h)

d log(h)

∣∣∣∣
h∗

= 1 +
d log(e)

d log(h)

∣∣∣∣
h∗

= 1− Uhe/(z
∗uc)h

∗e∗

Uee/(z∗uc)(e∗)2
(56)

Next, we can take of a Taylor series of log(e(h)) around log(h∗) using Equation (55):

log(e) = log(e∗)− Uhe/(z
∗uc)h

∗e∗

Uee/(z∗uc)(e∗)2
[log(h)− log(h∗)] (57)

We can use Equation (57) to infer (a first order approximation for) eF−e∗

e∗ from hF−h∗

h∗ :

eF − e∗

e∗
≈ log(e(hF ))− log(e∗) = −Uhe/(z

∗uc)h
∗e∗

Uee/(z∗uc)(e∗)2
[
log(hF )− log(h∗)

]
≈ −Uhe/(z

∗uc)h
∗e∗

Uee/(z∗uc)(e∗)2
hF − h∗

h∗
= (χz,h − 1)

hF − h∗

h∗

(58)

Next, let us rearrange our expression for δ(hF ,eF )
z∗ from Equation (40) slightly:

− Uhh(h
∗)2

2z∗uc

(
hF − h∗

h∗

)2

− Uee(e
∗)2

2z∗uc

(
eF − e∗

e∗

)2

− Uehh
∗e∗

z∗uc

eF − e∗

e∗
hF − h∗

h∗

=

{
−Uhh(h

∗)2

2z∗uc
− Uee(e

∗)2

2z∗uc
(χz,h − 1)2 − Uehh

∗e∗

z∗uc
(χz,h − 1)

}(
hF − h∗

h∗

)2

=

{
−Uhh(h

∗)2

2z∗uc
+

Uehh
∗e∗

2z∗uc
(χz,h − 1)− Uehh

∗e∗

z∗uc
(χz,h − 1)

}(
hF − h∗

h∗

)2

=

{
−Uhh(h

∗)2

2z∗uc
− Uehh

∗e∗

2z∗uc
(χz,h − 1)

}(
hF − h∗

h∗

)2

(59)

where the first equality substitutes in the Equation for eF−e∗

e∗ from Equation (58), the second

equality uses the fact that (χz,h − 1) = −Uhe/(z
∗uc)h∗e∗

Uee/(z∗uc)(e∗)2
, and the third equality just adds terms

together.
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The final step is to use a bit of algebra to rearrange our expression for the ideal hours

elasticity from Equation (54):

(1− T ′)
1

ξh∗
=

Uhh(h
∗)2

z∗uc

Uee(e∗)2

z∗uc
−
[
Uheh

∗e∗

z∗uc

]2
Uheh∗e∗

z∗uc
− Uee(e∗)2

z∗uc

=
−Uhh(h

∗)2

z∗uc
− Uheh

∗e∗

z∗uc

[
−Uheh

∗e∗

z∗uc

/Uee(e∗)2

z∗uc

]
[
−Uheh∗e∗

z∗uc

/Uee(e∗)2

z∗uc

]
+ 1

=
−Uhh(h

∗)2

z∗uc
− Uheh

∗e∗

z∗uc
(χz,h − 1)

χz,h

(60)

Combining Equations (59) and (60), we get that:

δ(hF , eF )

z∗
≈
{
−Uhh(h

∗)2

2z∗uc
− Uehh

∗e∗

2z∗uc
(χz,h − 1)

}(
hF − h∗

h∗

)2

= (1− T ′)
χz,h

2ξh∗

(
hF − h∗

h∗

)2

(61)

A.7 Proof of Proposition 6

Proof. First, let us rewrite the maximization problem (15) with a perturbed tax schedule in

period t of Tt(wtht) + ϵτt(wtht):

max
ht

{
max
σt

u(wtht − Tt(wtht)− ϵτt(wtht)− σt, ht) +E[V (wt+1(ht), κt + rtσt)]

}
(62)

Next, let us solve the inner problem. Suppose for the time being that σ∗
t (ht) is interior and

let u1 and V2 represent derivatives of u and V w.r.t. the first and second arguments:

−u1(wtht − Tt(wtht)− ϵτt(wtht)− σ∗
t (ht), ht) +E[V2(wt+1(ht), κt + rtσ

∗
t (ht))] = 0 (63)

Hence, we can rewrite Equation (62) as follows:

max
ht

u(wtht − Tt(wtht)− ϵτt(wtht)− σ∗
t (ht), ht) +E[V (wt+1(ht), κt + rtσ

∗
t (ht)] (64)

Next, we have the first order condition that is satisfied when ht = h∗t :

u1(wtht − Tt(wtht)− ϵτt(wtht)− σ∗
t (ht), ht)wt(1− T ′

t − ϵτ ′t)

+ u2(wtht − Tt(wtht)− ϵτt(wtht)− σ∗
t (ht), ht) +E

[
V1(wt+1(ht), κt + rtσ

∗
t (ht))

dwt+1

dht

]
+ [−u1(wtht − Tt(wtht)− ϵτt(wtht)− σ∗

t (ht), ht) +E [V2(wt+1(ht), κt + rtσ
∗
t (ht))]]

∂σ∗
t

∂ht
= 0

(65)

Next, let us consider how ht changes when we perturb the tax schedule in the direction of the

function τt(wtht) = (w∗
t h

∗
t − wtht) which decreases marginal tax rates at w∗

t h
∗
t but does not

change the tax level at w∗
t h

∗
t (i.e., a compensated tax change). Next, we apply the implicit

function theorem. Differentiating Equation (65) w.r.t. ϵ with τt(wtht) = (w∗
t h

∗
t − wtht) and
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evaluating at ϵ = 0 and ht = h∗t , noting that τ ′t(w
∗
t h

∗
t ) = −1, we have that:

u1(wth
∗
t − Tt(wth

∗
t )− σ∗

t , h
∗
t )wt + Uhtht(h

∗
t )
∂h∗

∂ϵ
= 0 (66)

where Uhtht(h
∗
t ) represents the second derivative u(wtht − Tt(wtht) − ϵτt(wtht) − σ∗

t (ht), ht) +

E[V (wt+1(ht), κt+rtσ
∗
t )] w.r.t ht evaluated at h∗t . Note, we have used the fact that by the FOC

for σt:

[−u1(wtht − Tt(wtht)− ϵτt(wtht)− σ∗
t (ht), ht) +E [V2(wt+1(ht), κt + rtσ

∗
t (ht))]] = 0

so that we can ignore calculating ∂
∂ϵ

(
∂σ∗

t
∂ht

)
when differentating Equation (65) w.r.t. ϵ. From

Equation (66) we have that:

−Uhtht(h
∗
t )

u1(h∗t )
= wt

(
∂h∗t
∂ϵ

)−1

≡ wt

(
ξh∗

t

h∗t
1− T ′

)−1

=
wt(1− T ′)

ξh∗
t
h∗t

(67)

But what if σ∗
t (ht) is not interior? In this case, we have that

∂σ∗
t

∂ht
= 0 as we assume either that

σ∗
t (ht) is interior or σ∗

t does not change with small changes in ht so that Equation (67) still

holds.

From here, it should be clear that because we define δ(hFt ) as:

u(wth
F
t − Tt(wth

F
t )− σ∗

t (h
F
t ) + δ(hFt ), h

F
t ) +E[V (wt+1(h

F
t ), κt + rtσ

∗
t (h

F
t ))]

= u(wth
∗
t − Tt(wth

∗
t )− σ∗

t (h
∗
t ), h

∗
t ) +E[V (wt+1(h

∗
t ), κt + rtσ

∗
t (h

∗
t ))]

then the analogue of Equation (5) is that (this follows exactly by the logic of Appendix A.1):

d2δ

dh2

∣∣∣∣
h∗
t

=
−Uhtht(h

∗
t )

u1(h∗t )
(68)

Putting Equations (67) and (68) together and applying the fundamental theorem of calculus

exactly as in Proposition 1 we get Proposition 6.

B Appendix: Additional Results

B.1 Cost of Friction Bounds with Effort Decision

We can also bound the cost frictions in a model with effort decisions if we add in an additional

assumption, letting zF ≡ whF eF :

Proposition 9. Suppose that there are no frictions in choosing effort per hour and that e(h)

represents optimal effort for any given hours. Also suppose individuals always have the choice

to not work. The willingness-to-pay to remove frictions is bounded by:

δ(hF , e(hF ))

z∗
<

z∗ − T (z∗)− [zF − T (zF )]

z∗
for h∗ > hF (69)

δ(hF , e(hF ))

z∗
<

z∗ − T (z∗) + T (0)

z∗
for h∗ < hF (70)

where z∗ ≈ zF h∗

hF
1

1+(χz,h−1)h
F−h∗
h∗

as long as:
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• du(c,h,e(h))
dh < 0 ∀c, h so that working more hours is costly, even accounting for changes in

effort that occur concurrently (i.e., hours and effort per hour aren’t strong substitutes).

• dδ(h,e(h))
dh

∣∣
h
< 0 ∀ h < h∗ so that WTP to remove frictions is increasing as h gets farther

away from h∗.

Proof. For individuals for whom h∗ > hF , we have that:

u(c(h∗, e∗), hF , e(hF ))− u(c(h∗, e∗), h∗, e∗) > 0

given that our first assumption ensures working more hours is costly (and e∗ = e(h∗) because

effort is chosen frictionlessly). Given that by definition:

u(c(hF , e(hF )) + δ(hF , e(hF )), hF , e(hF ))− u(c(h∗, e∗), h∗, e∗) = 0

and
u(c(hF , e(hF )), hF , e(hF ))− u(c(h∗, e∗), h∗, e∗) < 0

then the intermediate value theorem implies that δ(hF , e(hF )) ∈ (0, c(h∗, e∗)− c(hF , e(hF ))) =

(0, z∗ − T (z∗)− [zF − T (zF )]) where z∗ = wh∗e∗ and zF = whF e(hF ).

For individuals with h∗ < hF we have that:

u(c(h∗, e∗), 0, 0)− u(c(h∗, e∗), h∗, e∗) > 0

given that h and e are presumed costly. Given that by definition:

u(c(0, 0) + δ(0, 0), 0, 0)− u(c(h∗, e∗), h∗, e∗) = 0

and u(c(0, 0), 0, 0) < u(c(hF , e(hF )), hF , e(hF )) by revealed preference as individuals are as-

sumed to have the choice to not work we have that:

u(c(0, 0), 0, 0)− u(c(h∗, e∗), h∗, e∗) < u(c(hF , e(hF )), hF , e(hF ))− u(c(h∗, e∗), h∗, e∗) < 0

then the intermediate value theorem implies that δ(0, 0) ∈ (0, c(h∗, e∗) − c(0, 0)) = (0, z∗ −

T (z∗) − [0 − T (0)]). By assumption dδ(h,e(h))
dh |h < 0 ∀ h < h∗ so that δ(0, 0) > δ(hF , e(hF )) as

hF > 0 and e(0) = 0.

Finally z∗ ≈ zF h∗

hF
1

1+(χz,h−1)h
F−h∗
h∗

follows from the fact that zF = whF eF and z∗ = wh∗e∗ =

zF h∗

hF
e∗

eF
and the approximation for e∗

eF
from Equation (58) derived in the proof to Proposition

3.

The intuition is essentially the same as Proposition 2: for individuals who would ideally like

to work more hours than they currently do, the WTP to remove frictions cannot be larger than

the increase in your after tax income because labor supply is costly; for individuals who would

ideally like to work fewer hours than they currently do, the WTP to remove frictions is bounded

above by the WTP of moving from unemployment to her optimum, which is bounded by the

consumption gain that she gets from working at her optimal hours relative to unemployment.
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B.2 German Tax Reforms

We will explore the impacts of tax changes on the ideal hours worked in the context of a large

German tax reform in 1996 that changed marginal tax rates at different rates for most taxpayers.

Figure 8 shows the German marginal tax rate schedule in three different time periods. Before

1996, incomes below 5,626 Deutschemark (DM) were taxed at 0%, with a discontinuous jump

to 19% for incomes up to 8,153 DM.28 The marginal tax rate increased linearly with income

up to 120,041 DM before again leveling out at a constant 53% marginal tax rate. In 1996,

Germany underwent its only significant reform to the marginal rate schedule of the decade,

nearly doubling the income threshold for 0% marginal taxes to 12,095 DM and increasing the

marginal rate of the first non-zero bracket from 19% to ≈ 26%.29

Germany underwent another tax reform in 2001, illustrated by the green line in 8. Prior to

2001, the tax rate increased linearly from 48.5% to 53% between incomes of 107,567 DM 120,041

DM; in 2001 the tax schedule was changed so that the top marginal tax rate remained constant

at 48.5% starting at an income of 107,567 DM. There were also some small adjustments at the

bottom of the income distribution as well, which are shown in the figure. When estimating the

elasticity of h∗ with respect to the marginal tax rate, we will leverage all of the variation in tax

rates from 1995-2001.

Figure 8: Marginal Tax Rate Schedule in Germany, 1991-2001
Notes: This figure displays the variation in German marginal tax rates over time. The tax schedule
was the same from 1991 to 1995, then was reformed in 1996. The tax schedule then underwent small
reforms each year between 1998, 1999, and 2000. There was another reform in 2001 which was larger
than the reforms in 1998, 1999, and 2000 but smaller than the reform in 1996.

28Germany used the Deutschemark before 2002. The conversion factor in 2002 was 1.96 DM/Euro.
29There were very small adjustments to the linearly-increasing portion of the schedule in 1998 and 1999, and

an additional (small) linearly-increasing tax bracket was also created in 1999.
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B.3 Deriving Equation (10)

We begin with Equation (25), which describes behavioral responses to arbitrary non-linear tax

perturbations, reproduced below:

∂ log(h∗)

∂µ
=

ucw

−d2u

1− T ′(wh∗)

h∗︸ ︷︷ ︸
Substitution Elasticity, ξh∗

−τ ′(wh∗)

1− T ′(wh∗)
+

wh∗ − T (wh∗)

h∗
uccw(1− T ′) + uch

−d2u︸ ︷︷ ︸
Income Elasticity, ηh∗

−τ(wh∗)

wh∗ − T (wh∗)

Recall that for purposes of determining the willingness-to-pay to remove frictions, the rel-

evant parameter is ϵ which captures how h∗ changes with the marginal tax rate, holding the

tax level constant. Equation (25) implies that the impact of a small tax change to a non-linear

tax schedule can be decomposed into a substitution elasticity ξh∗ multiplied by the percentage

change in the keep rate at optimal income wh∗, −τ ′(wh∗)
1−T ′(wh∗) = ∂ log(1−T ′(wh∗)−µτ ′(wh∗))

∂µ |µ=0, and

an income elasticity parameter ηh∗ multiplied by the percentage change in after tax income at

the optimal income wh∗, −τ(z∗)
z∗−T (z∗) =

∂ log(wh∗−T (wh∗)−µτ(wh∗))
∂µ |µ=0. Hence, we have:

∂ log(h∗)

∂µ
=ξh∗

∂ log(1− T ′(wh∗)− µτ ′(wh∗))

∂µ
+ ηh∗

∂ log(wh∗ − T (wh∗)− µτ(wh∗))

∂µ
(71)

Approximating the derivatives in Equation (71) yields Equation (10). Importantly, note that the

terms multiplying the substitution elasticity and the income elasticity are ∂ log(1−T ′(wh∗)−µτ ′(wh∗))
∂µ

and ∂ log(wh∗−T (wh∗)−µτ(wh∗))
∂µ which capture the mechanical changes to the keep rate and after-

tax income that result from the tax perturbation, holding decisions fixed.

B.4 Inferring Perceived Marginal Tax Rates from Rees-Jones and Taubinsky

(2020)

The survey data from Rees-Jones and Taubinsky (2020) asks individuals about their perceived

tax liability but not their perceived marginal tax rates. To infer their perceptions about marginal

tax rates, we use the fact that individuals were also asked about their perceptions of the tax

liability at 16 different income levels other than their own. Hence, we can get an estimate of

the perceived marginal tax rate between two income levels z1 and z2 with the approximation:

T̂ ′ = T̂ (z2)−T̂ (z1)
z2−z1

.

Letting z1 represent the individual’s income, one may be inclined to use the z2 which is

closest to z1 to infer the individual’s perception of their marginal tax rate. However, this turns

out to be problematic in this setting. If individuals make errors, σi in their assessment of T̂ (zi),

then when |z2−z1| ≈ 0, then T̂ ′ = T̂ (z2)−T̂ (z1)+σ2−σ1

z2−z1
can be significantly biased if σi ⊥ zi (as the

denominator gets very small but the errors do not become correspondingly small). In particular,

if individuals are unsure about the tax level at z1, z2 they may just guess T (z1) = T (z2) if z1 ≈ z2

heuristically; however, this is probably not a good indication of their perception of marginal

tax rates and is rather a reflection of their uncertainty about tax liabilities more generally.
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Alternatively, individuals may “hedge” their answers by answering that T (z2) = T (z1) + 1000

if z1 ≈ z2, but this will lead to non-sensical tax rates above 100% if |z2 − z1| < 1000. Both of

these biases seem to be quite common in the survey data of Rees-Jones and Taubinsky (2020),

see Figure ?? which plots the distribution of inferred marginal tax rates when using the closest

z2 to each z1.

Hence, there is a significant concern that using values of z2 that are very close to z1 will

yield incorrect estimates of individual’s perceived marginal tax rates. In contrast, using values

of z2 that are very far from z1 will conflate their perceptions about marginal tax rates and

their perceptions about average tax rates. As a middle ground approach, we use the value of z2

that is farther away from z1 yet still in the same tax bracket to infer their perceptions about

marginal tax rates; this is what is shown in Figure ?? in the text.

B.5 Decomposition: Adjustment Frictions vs. Misperceptions

From Equation (18), we can decompose the cost of frictions as follows by using the fact that

hF − h∗∗ = (hF − h∗) + (h∗ − h∗∗):

δ(hF )

wh∗∗
≈ (1− T ′)

(
hF−h∗∗

h∗∗

)2
2ξh∗∗

=

1− T ′

2ξh∗∗

(
hF − h∗

h∗∗

)2

︸ ︷︷ ︸
Adjustment Frictions

+
1− T ′

2ξh∗∗

(
h∗ − h∗∗

h∗∗

)2

︸ ︷︷ ︸
Misperceptions

+2
1− T ′

2ξh∗∗

hF − h∗

h∗∗
h∗ − h∗∗

h∗∗︸ ︷︷ ︸
Covariance


(72)

If our estimate of δ(hF )
wh∗∗ comes from Proposition 2, then we can decompose the impact of ad-

justment frictions vs. misperceptions as:

δ(hF )

wh∗∗
=

wh∗∗ − T (wh∗∗)− [whF − T (whF )]

wh∗∗

=

wh∗ − T (wh∗)− [whF − T (whF )]

wh∗∗︸ ︷︷ ︸
Adjustment Frictions

+
wh∗∗ − T (wh∗∗)− [wh∗ − T (wh∗)]

wh∗∗︸ ︷︷ ︸
Misperceptions

 (73)

δ(hF )

wh∗∗
=

wh∗∗ − T (wh∗∗) + T (0)

wh∗∗

=

wh∗ − T (wh∗) + T (0)

wh∗∗︸ ︷︷ ︸
Adjustment Frictions

+
wh∗∗ − T (wh∗∗)− (wh∗ − T (wh∗))

wh∗∗︸ ︷︷ ︸
Misperceptions

 (74)

Using Equations (72), (73), and (74) we can decompose the cumulative cost of frictions into

the contributions of the adjustment frictions, misperceptions, and their covariance. Figure 9

presents the results from this exercise setting η = 0. Overall, we see that at small values of ξh∗∗ ,

misperceptions are essentially not contributing to the cumulative cost of frictions. Even at ξh∗∗ =
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1, adjustment frictions generate 80% of the cumulative cost of frictions while misperceptions

generate the remaining 20%. The covariance has essentially no contribution to the cumulative

cost of frictions because the correlation between hF−h∗

h∗∗ and h∗−h∗∗

h∗∗ turns out to only be 0.01.30
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Figure 9: Decomposition of Cost of Frictions
Notes: Cost of frictions w/ ξh∗∗ .

B.6 Adjustment Frictions vs. Misperceptions in the GSOEP

We do not have data on the size of misperceptions in Germany. However, we nonetheless explore

what the impact of misperceptions might look like in the context of Germany by exploring the

possibility that all individuals misperceive their average tax rate as their marginal tax rate (both

De Bartolome (1995) and Rees-Jones and Taubinsky (2020) identify that ≈ 50% of taxpayers

use this heuristic). Figure 10 shows the cumulative size of frictions if all individuals misperceive

their average tax rate as their marginal tax rate in the GSOEP (and assuming they correctly

perceive their total tax burden). Qualitatively, the takeaways from this exercise are the same

as in the NSCW in Section 5.4: (1) adjustment frictions are larger than misperceptions (when

ξh∗ = 0.2 adjustment frictions account for 89% of the cumulative cost and even when ξh∗ = 1

adjustment frictions account for 60% of the cumulative cost) and (2) even though adjustment

frictions become smaller with ξh∗ , the cost of misperceptions goes up with ξh∗ so that the

30For comparison, if we set η = −0.5, then misperceptions contribute about 10% to the cumulative cost when
ξh∗∗ = 0.01 (and the covariance contributes about -7%) and misperceptions contribute about 19% when ξh∗∗ = 1
(and the covariance contributes about -1%).
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cumulative cost of frictions is large no matter the value of ξh∗ .
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Figure 10: Cumulative Size of Frictions in the GSOEP
Notes: Cost of frictions w/ ξh∗∗ .

C Appendix: Chetty (2012)

D Appendix: Figures and Tables

(a) NSCW (b) GSOEP

Figure 11: h vs. h∗ Distributions
Notes: These histograms show the distributions of h and h∗ for the NSCW and the GSOEP.

47



0

.1

.2

.3
δ(

hF )/(
w

h*
)

0 .1 .2 .3 .4
ξh*

Mean (wh*) Median (wh*) Mean (wh) Median (wh)

(a) NSCW
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Figure 12: δ(hF )/(wh) vs. ξh∗

Notes: This figure shows mean and median values of δ(hF )/(wh) as well as δ(hF )/(wh∗)
for various values of ξh∗ in both the NSCW and the GSOEP.
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Figure 13: Cost of Adjustment Frictions and Misperceptions, η = −0.5
Notes: This figure displays the mean and median cumulative cost of frictions along with the mean
and median cost of frictions assuming no misperceptions of the tax schedule. We assume η = −0.5,
which means that each exogenous 1% change in after-tax income leads to a 0.5% decrease in ideal

hours (see Equation (10)). To simplify computations we also assume that log(wh∗∗ − T̂ (wh∗∗)) −
log(wh∗∗ − T (wh∗∗)) = log(wh − T̂ (wh)) − log(wh − T (wh)) so that individuals’ misperceptions of
their ideal after-tax income are the same as their misperceptions of their actual after-tax income.
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Figure 14: δ(hF )
wh∗ vs. ξh∗

Notes: This figure displays a comparison between the cost of frictions calculated using second order
approximation as in Proposition 1 and the cost of frictions calculated assuming that utility is quasi-

linear iso-elastic (QLIE) with elasticity ϵ: u(c, h) = αc − h1+1/ϵ

1+1/ϵ
. For each value of ϵ, we calculate

the WTP to remove frictions from Equation (2) where α is pinned down from each individuals FOC
evaluated at h∗. Note, we still apply Proposition 2 to bound the cost of frictions even if we assume
QLIE utility because for some individuals the choice to work much more than their ideal hours rather
than not work at all may not be rationalizable with a given elasticity.

D.1 Estimates of the Hours Worked and Taxable Income Elasticities w.r.t.

the Marginal Tax Rate

Table 2: Estimates of the Observed Hours Worked Elasticity w.r.t. the Marginal Tax Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline Cubic Linear Time Trends <50th Singles All Hhs 2 Yr Diff 4 Yr Diff

ξh∗ 0.08 0.08 0.11 0.08 0.04 0.29 0.07 -0.01 0.15
( 0.09) ( 0.08) ( 0.09) ( 0.09) ( 0.10) ( 0.15) ( 0.08) ( 0.09) ( 0.12)

ηh∗ 0.21 0.18 0.50 0.25 -0.06 0.40 0.29 0.09 0.12
( 0.26) ( 0.22) ( 0.22) ( 0.25) ( 0.34) ( 0.40) ( 0.23) ( 0.25) ( 0.27)

Obs. 4,328 4,344 4,344 4,328 2,392 2,496 6,229 5,935 3,082

Notes: Standard errors are clustered at the household level and are presented in parentheses. Each
column presents estimates from regression (11) except the dependent variable is now the change in log
hours worked for individual i, ∆ log hF,it. Columns (1)-(7) use 3 year differences while Columns (8) and
(9) use 2 and 4 year differences, respectively. All regressions are for years 1991-2001 inclusive, include
year dummies, a married dummy, and restrict to individuals for whom marital status did not change
over the pair of differences. All regressions are weighted using household survey weights. Column (1),
(4), (5), (6), (7) include a spline in lagged log household income (i.e., lagged income decile dummies
interacted with lagged income); Column (4) also includes lagged income interacted with a linear time
trend. Instead of a spline, Column (2) includes a cubic polynomial in lagged log household income while
Column (3) includes a linear polynomial in lagged log household income. All columns except (6) and (7)
restrict to single-earner households. Column (6) restricts to single households only. Column (7) includes
both single- and dual-earner households and the dependent variable for Column (7) is now wage weighted
observed hours ∆ log(wih

F
it +wjh

F
jt) where j represents the second earner (if there is one) and the wages

are equal to wages in time period t−3. Finally, Column (5) restricts to households with lagged household
income below the 50th percentile.
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Table 3: Estimates of the Taxable Income Elasticity w.r.t. the Marginal Tax Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline Cubic Linear Time Trends <50th Singles All Hhs 2 Yr Diff 4 Yr Diff

ξh∗ 0.34 0.36 0.54 0.27 0.33 0.67 0.19 0.62 0.50
( 0.19) ( 0.18) ( 0.18) ( 0.20) ( 0.20) ( 0.31) ( 0.15) ( 0.16) ( 0.21)

ηh∗ -0.67 -0.38 0.93 -0.77 -0.55 -0.72 -0.48 0.16 0.21
( 0.38) ( 0.35) ( 0.35) ( 0.39) ( 0.59) ( 0.61) ( 0.29) ( 0.36) ( 0.43)

Obs. 4,610 4,627 4,627 4,610 2,564 2,673 7,669 6,343 3,255

Notes: Standard errors are clustered at the household level and are presented in parentheses. Each
column presents estimates from regression (11) except the dependent variable is now the change in log
taxable income for individual i, ∆ logwithF,it. Columns (1)-(7) use 3 year differences while Columns
(8) and (9) use 2 and 4 year differences, respectively. All regressions are for years 1991-2001 inclusive,
include year dummies, a married dummy, and restrict to individuals for whom marital status did not
change over the pair of differences. All regressions are weighted using household survey weights. Column
(1), (4), (5), (6), (7) include a spline in lagged log household income (i.e., lagged income decile dummies
interacted with lagged income); Column (4) also includes lagged income interacted with a linear time
trend. Instead of a spline, Column (2) includes a cubic polynomial in lagged log household income while
Column (3) includes a linear polynomial in lagged log household income. All columns except (6) and
(7) restrict to single-earner households. Column (6) restricts to single households only. Column (7)
includes both single- and dual-earner households and the dependent variable for Column (7) is now wage
weighted observed hours ∆ log(with

F
it + wjth

F
jt) where j represents the second earner if there is one.

Finally, Column (5) restricts to households with lagged household income below the 50th percentile.
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