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1 Exploring Heterogeneity Nonparametrically via Generalized Ran-
dom Forests

1.1 Measuring Heterogeneity without Machine Learning

To this point, our analysis has examined heterogeneity along various manually-defined subgroup dimen-
sions. However, there is a small but rapidly growing literature in so-called “causal machine learning” which
has provided promising methods to nonparamatrically characterize treatment effect heterogeneity in a data-
driven manner (e.g. Athey and Imbens (2016), Wager and Athey (2018), Athey et al. (2019), etc.). While
we have presented results from subgroups which one may theoretically expect to drive variation in treatment
effect magnitudes across states and districts, there are many reasons why it may be beneficial to move beyond
manual subgroup definitions into data-driven subgroup definitions.

Consider a simple, hypothetical scenario in which a researcher wishes to estimate the average treatment
effect (ATE)1 of a binary treatment, Wi ∈ {0, 1}, on an outcome, Yi, where identification of this causal effect
comes from the conditional independence assumption (CIA) – i.e. individual assortment into treatment
status is random conditional (or unconditional) on a set of covariates, Xi. Under the CIA, the researcher
might estimate the following regression and obtain an unbiased estimate of the ATE, defined as the difference
in potential outcomes for observation i under treatment vs. no treatment, τ = E[Yi(1)− Yi(0)|Xi]:

Yi = α+ τWi +X ′
iβ + εi (1)

Now, the researcher wishes to understand how τ varies along the dimensions of Xi. The usual approach
to handling this question is to add an interaction term in the regression (assuming first, for simplicity, there
is a single variable, Xi, in Xi):

Yi = α+ τWi + β1Xi + β2WiXi + εi (2)

After estimating (2), the researcher concludes that the treatment effect along the Xi dimension is τ +
β2Xi. While this approach may be satisfactory for a single dimension of heterogeneity, as Xi grows in its’
dimensions, the number of parameters which must be estimated under this framework grows rapidly as the
researcher must interact each dimension of heterogeneity with (1)Wi and (2) all other covariates in all possible

combinations. To illustrate, ifXi contains just five covariates, there are
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31 treatment-covariate interactions to estimate and another
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to estimate. Including the ATE parameter itself and the intercept, the researcher must estimate a grand
total of 64 parameters in this linear model. Figure 1 illustrates how rapidly the number of parameters
grows with the dimensionality of Xi. Even still, this linear model fails to consider non-linearities such as
higher-order polynomials of the covariates and/or any important interactions between those polynomials.

1Under the CIA and homogeneity of treatment effects, the ATT = ATE. However, if there is treatment effect heterogeneity,
then Equation (1) will identify the ATE, which will not equal the ATT. It is important to be aware of which treatment effect
we are after when we generalize Equation (1).
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In practice, it is likely that most interactions have little impact on treatment effect magnitude. Yet, OLS
cannot inherently identify and place greater weights on more important covariates, yielding a traditional
approach to heterogeneity mapping that is both cumbersome to interpret and dangerous to estimate, as the
researcher loses statistical power quickly and runs the risk of spurious results due to multiple hypothesis
testing.

Figure 1: Parameters vs. Variables
Notes: This graph shows the number of parameters one must estimate in a fully-interacted linear model akin to
Equation (2) as the number of covariates (i.e. possible dimensions of heterogeneity) in Xi increases.

Because of this “curse of dimensionality” problem and multiple hypothesis testing limitations, researchers
often will either add one covariate interaction at-a-time (estimating a large number of regressions rather
than a large number of parameters to retain statistical power in each model) or will discretize continuous
variables along theoretical (or sometimes arbitrary) thresholds. While these methods certainly provide
some information on the nature of heterogeneity in the data, there are two major limitations to these
approaches. Firstly, they are not generally able to control for correlations among covariates. That is,
colinearity between heterogeneity dimensions will yield similar results regarding their relative contribution
to the average treatment effect, obscuring which covariate is driving the heterogeneity. For example, if school
district income is heavily correlated with school spending, both may return significant coefficients in their
respective regressions while it may be that school spending is the only true driver of the effect. The second
limitation is that, even if there is good reason for the selection of thresholds when discretizing, user-sepcified
partitions may be suboptimal. These limitations mean that (1) researchers will only find heterogeneity where
they look and (2) researchers may misspecify the nature of the heterogeneity in the place they are looking.

1.2 Overview of Generalized Random Forests

In the prior subsection, we discussed the limitations of OLS when conducting heterogeneity analysis. The
core of the issue is that OLS is well equipped to estimate average impacts, but poorly equipped to identify
subgroups where average impacts are similar within-group. In this section, we seek to address this problem
through a nonparametric mapping of the conditional average treatment effect function with generalized
random forests (Wager and Athey (2018); Athey et al. (2019)). Generalized random forests (GRFs) are
inherently matching algorithms. However, they do not employ matching for identification of the ATE but
rather, they employ matching to identify heterogeneity in the ATE. This subsection will first provide a
primer on the “causal tree” (Athey and Imbens, 2016), an adapted variant of the standard decision tree
which has been shown to retain the beneficial asymptotic properties of OLS while estimating ATEs within
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subgroups. Second, we outline the training procedure and the aggregation of causal trees into a “causal
forest.” Third, we discuss adapting the standard causal tree/forest algorithm to a difference-in-differences
setting with continuous treatment dosage. Finally, we discuss the relative benefits of the GRF approach in
terms of selection bias control within subgroups.

1.2.1 Causal Trees

The high-level idea of the causal tree is that one can leverage matching estimators to identify subgroups
with common treatment effects when identification of the ATE itself comes from another source (e.g. ran-
domized treatment assignment, instrumental variables, etc.). In order to illustrate how the causal tree acts
as a matching estimator, let us consider the estimate of the ATE from Equation (1) expressed as a matching
estimator with corresponding potential outcomes:

τ̂ =
1

n

n∑
i=1

[Y (Wi = 1|Xi)− Y (Wi = 0|Xi)]

= E[Yi(1)|Wi = 1]− E[Yi(0)|Wi = 0]

= E[Yi(1)− Yi(0)|Wi = 1]︸ ︷︷ ︸
ATE

+E[Yi(0)|Wi = 1]− E[Yi(0)|Wi = 0]︸ ︷︷ ︸
Selection/Omitted Variable Bias

If the conditional independence assumption (CIA) holds, then Xi represents the true set of confounders.
This implies that E[Yi(0)|Wi = 1,Xi] = E[Yi(0)|Wi = 0,Xi] and therefore, the estimate of τ̂ is unbiased.
Intuitively, constructing a matching estimator with Xi to recover an unbiased estimate of τ works because we
are comparing the outcomes of similar enough treatment and control units such that treatment assignment
is random among that subset2. However, one need not employ matching for the purpose of constructing
valid control groups if valid control groups already exist. Instead, the goal of the causal tree is to construct
alternate subgroups where the covariates in Xi are used to match on treatment effect rather than treatment
status probability. Therefore, the implicit goal of the causal tree and causal forest is to relax Equation (1)
such that the ATE is a function for the conditional average treatment effect (CATE) and we seek to map
that function:

Yi = α+ τ(Xi)Wi + f(Xi) + εi (3)

τ(Xi) = E[Yi(1)− Yi(0)|Xi] (4)

Causal trees group observations by greedily and recursively3 splitting the data along covariates, xk ∈ X,
and thresholds, c, into finer and finer subsamples. Figure 2a provides a simple example of this process,
contrasted against an alternative matching algorithm based on researcher-specified Euclidean distance (2b),
a common technique popularized in the corporate finance literature by Barber and Lyon (1996). Splits occur
at “nodes.” The resulting partitions from any given split are known as “children nodes” whereas the larger
sample which was split is aptly called a “parent node.” Further splits are made along children nodes into
additional children nodes until stopping criteria are met, in which case we have a “leaf” (or sometimes called
a “terminal node”). In total, there are 5 leaves in this sample tree. A sample test point x is shown, where
its’ treatment effect estimate will be the ATE of training points within its’ leaf.

The optimal split at any given node is determined through gradient descent. The first step is to estimate
the ATE within the parent node, τ̂P , which is the GMM solution to a local moment condition implied by
the identification strategy.4 In the case of Equation (3), the root node estimate of τ̂ corresponds to the OLS

2This is true in both exact and inexact matching as it is well-known that controlling for “true” propensity scores, p(Xi) will
yield a similar condition in that E[Yi(0)|Wi = 1, p(Xi)] = E[Yi(0)|Wi = 0, p(Xi)]

3“Greedy” splitting refers to the process of selecting the optimal split relative to the current node only: never selecting
suboptimal splits or reverting back to prior splits. “Recursive” splitting refers to continuous splitting along the parent node,
then subsequently along child nodes, and so on until stopping criteria are met.

4Extending the causal forest procedure to apply to any local moment condition is the work of Athey et al. (2019) in their
generalized random forest procedure. We will use the term “causal forest” and “generalized random forest” interchangeably,
but in all cases we are applying the generalized random forest as the causal forest is a special case of the GRF where treatment
assignment is purely random.
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(a) Example Tree-Based Matching (b) Example Euclidean Matching

Figure 2: Tree-Based Matching vs. Euclidean Matching
Notes: The left figure shows an example of recursive partitioning (i.e. tree-based matching) in a simple case of
two covariates. In this example, “treated” units are the blue triangles and “untreated” units are the red circles.
The first split (i.e. “root node”) partitioned the data along X1, segmenting those units where X1 ≥ 5 in one “child
node,” C1, and those with X1 < 5 in the other (C2). Within C1, the algorithm again partitioned into two further
children nodes (where C1 is now itself a “parent” node) according to the threshold X2 = 7.5. Similarly, in C2, a
further split was made according to X2 = 5. These splits in each case were made to maximize the squared-difference
in treatment effect estimates across the resulting child nodes. In total, this sample tree has 5 leaves (a.k.a. terminal
nodes) where treatment effect predictions for test points within each leaf will be constant. The right figure shows
a contrasting example of Euclidean-distance matching similar to Barber and Lyon (1996).

estimate of the ATE because the relevant local moment condition is the CIA and no splits have been made
yet:

E[W ′
iεi|Xi] = 0

=⇒ E[W ′
i (Yi −Wiτ(Xi))|Xi] = 0

=⇒ 1

n

∑
i

WiYi −
1

n

∑
i

W 2
i τ̂P = 0

=⇒ τ̂P =

∑
i WiYi∑
i W

2
i

(5)

The second step is to search over covariates and thresholds for the split that maximizes the squared-difference
in estimated average treatment effects between the resulting partitions, C1 and C2, which can be described
in the following objective function:

max
xk,c

nC1
nC2

(τ̂C1
− τ̂C2

)2 (6)

Where τ̂Cj
is approximated via a first-order Taylor series in order to remain computationally tractable:

τ̂Cj ≈ τ̂P −
∑

i∈Cj
Wi(Yi −Wiτ̂P )∑
i∈Cj

W 2
i

(7)

Note that this can also be described in terms of the influence function, ρi,P , for observation i on the ATE
in a given parent node, P :

ρi,P =
Wi(Yi −Wiτ̂P )

1
nP

∑
i∈P Wi

(8)

Where the objective function, Equation (6), is equivalent to maximizing the sum of the average influence
functions between C1 and C2 as each average influence function capturess how much the treatment effect in
the child node is likely to differ from the treatment effect estimate in the parent node. So Equation (6) may
be restated as the following:

max
xk,c

∆̃(C1, C2) =

2∑
j=1

1

nCj

( ∑
i∈Cj

ρi,P

)2

(9)
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A key implementation detail is a process Athey and Imbens (2016) call “honesty.” That is, two disjoint
subsamples are used in the training of a single causal tree: one for determining the tree structure in the
manner described above, and one for populating the nodes of the tree with treatment effect predictions. This
is a critical step for ensuring treatment effect point estimates for out-of-sample test points are asymptotically
normal and consistent, and eliminates the need for pruning.

Another point on implementation is regarding hard-coded splitting rules which help control balance,
commonly referred to as “hyperparameters” in the machine learning literature. A potential problem which
arises from “greedy” splitting is that unbalanced splits may occur (i.e. too few treatment or control units
in a terminal leaf). These hyperparameters essentially define stopping rules such that a tree knows when to
cease further splitting along a branch. Some of the more important ones include (1) the minimum number
of treatment/control observations in a child node (2) the minimum share of the parent node that must
be contained in a child node (3) the share of the training sample used as hold-out for honest estimation
(4) an optional imbalance penaly parameter. The default hyperparameter settings in the ‘grf’ package in
R (a stable CRAN package written by the original authors of the algorithm) are generally well-optimized
for performance, though sometimes the original authors recommend more strict regularization when, for
instance, there is more noise and/or less training data available.5

1.2.2 Aggregating Causal Trees into a Causal Forest

Wager and Athey (2018) note that, while point estimates of singluar causal trees have beneficial asymp-
totic properties, their structure remains quite sensitive to the initial split used to create the training data and
they do not produce “smooth” estimates of the conditional average treatment effect (CATE) function, τ̂(x).
In order to improve out-of-sample prediction quality and generate a smoother function mapping, the causal
forest algorithm grows B causal trees, where each tree is grown on a random sub-sample of the training
data6 and a random sub-sample of the covariate vector, X. Aggregating across all trees, we can describe
the CATE function as a weighted-average of the ATE, where the weight on training point i, αi, at a given
test point, x, is the share of total trees where training point i falls into the same leaf, Lb, as x:

αi(x) =
1

B

B∑
b=1

1{Xi ∈ Lb(x)}
|Lb|

(10)

Which yields the CATE function as estimated by the causal forest:

τ̂(x) =

∑n
i αi(x)WiYi∑n
i αi(x)W 2

i

(11)

We illustrate this process with two figures. First, Figure 3 illustrates how prediction quality improves and
the functional mapping becomes smoother as more trees are grown and predictions are aggregated across
trees. Here, data are generated according to a simple sine wave with additional idiosyncratic noise. We
train 1000 decision trees in a random forest, plotting the first single tree as the light blue line and the
forest-aggregated predictions as the dark blue line. The singular decision tree creates a piecewise functional
mapping of the data generating process which is less accurate than the smoother mapping produced by the
random forest.

The second illustrative figure is Figure 4, which displays how the causal forest aggregation creates a non-
parametric kernel of training sample points relative to a test point with simulated data. In this example,
there are three trees in a hypothetical forest, each creating their own partitions of the data with treated units
represented as blue triangles and contol units as red circles, displayed in panels (a) – (c). Panel (d) shows

5See this GitHub post by one of the authors as an example: https://github.com/grf-labs/grf/issues/120#issuecomment-
327276697

6Readers more familiar with random forests will note that this is slightly different from the bootstrapped sub-samples of the
training data used in traditional random forests.
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Figure 3: Smoothing and Prediction Improvement with Tree Aggregation
Notes: This graph shows 1 of 1000 regression trees designed to predict a sine wave data generating process and the resulting
smoother mapping produced from aggregating predictions across all trees in a random forest.

the resulting weights on training points related to test point x. Points which were in the same terminal leaf
as x more frequently are given more weight in the prediction of x’s individualized treatment effect.

1.2.3 A Brief Note on Centering

Before moving on, there is one additional implementation detail of the causal forest estimator we have
omitted for simplicity. In practice, the GRF actually estimates the CATE using residualized (a.k.a. re-
centered) observations to improve prediction quality. That is, the GRF estimates two auxilliary regression
trees: one to predict the conditional mean function, m(x) = E[Yi|Xi], and another to predict the propensity
score function, e(x) = E[Wi|Xi]. These auxilliary trees are trained via “leave-one-out” cross validation,
denoted with the notation (−i). That is, the tree uses all data except observation i in order to predict the
conditional mean/score for observation i, leaving us with n trees trained on n− 1 observations. The causal
forest algorithm uses these estimates to recenter observations before proceeding with the training of causal
trees and the subsequent forest aggregation. This produces a more robust and better performing estimate
of the CATE function (Robinson (1988); Athey et al. (2019)):

τ̂(x) =

∑n
i αi(x)W̃iỸi∑n
i αi(x)W̃ 2

i

(12)

Where: Ỹi = Yi − m̂(−i)(x); W̃i = Wi − ê(−i)(x)

1.3 Adapting the GRF to a Difference-in-Differences Setting

The prior subsection provided a primer on the causal forest procedure for identifying the conditional
average treatment effect when treatment assignment is random conditional (or unconditional) on a set of
covariates. We noted that Athey et al. (2019) generalized this procedure such that the causal forest algorithm
(in the form of generalized random forests – GRF) could be flexible enough to leverage any identification
assumption which includes the ATE as a parameter, provided there is an accompanying local moment
condition which can be solved via GMM. In this subsection, we outline our approach to applying this
generalized algorithm to identify heterogeneous treatment effects in our panel data setting with continuous
(dosage) treatment assignment.
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(a) Raw Data (b) Tree 1

(c) Tree 2 (d) Tree 3

(e) Forest-Defined Kernel

Figure 4: Illustration of Forest-Based Aggregation
Notes: These figures show an example derivation of forest-defined weights for a given test point, x, in a hypothetical
causal forest with 3 trees. Panels (b), (c), and (d) illustrate partitions created by each of the three trees, and panel
(e) shows the aggregation and how points are re-weighted based on how frequently they fall in the same terminal
leaf as x.
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1.3.1 Replacing the Conditional Independence Assumption with Parallel Trends

As discussed previously, the GRF procedure leverages the solutions of local moment conditions implied
by the identification assumptions of the ATE. In a panel setting such as ours, the ATE is identified via
the difference-in-differences estimator (DID) which notably relies on the parallel trends assumption (PTA)
rather than the CIA. In this subsection, we will briefly review the PTA and, more importantly, discuss which
specific version of the PTA from the recent DID literature we are applying in our GRF use-case.

Let us begin with the simple 2-group, 2-period case with binary treatment assignment. The basic PTA
states that the observed change in outcomes for the control group between the pre- and post- treatment period
(right-hand side) should equal the (counterfactual) change in outcomes for the treatment group between the
pre- and post-treatment period had they not received treatment (left-hand side):

PTA: E[Yi1(0)− Yi0(0)|Wi = 1] = E[Yi1(0)− Yi0(0)|Wi = 0]

If the PTA holds, we may derive the DID estimator of the ATE using observable moments:

τ = E[Yi1(1)|Wi = 1]− E[Yi1(0)|Wi = 1]

= E[Yi1(1)|Wi = 1]−
(
E[Yi1(0)|Wi = 0]− E[Yi0(0)|Wi = 1] + E[Yi0(0)|Wi = 1]

)
= E[Yi1(1)− Yi0(0)|Wi = 1]− E[Yi1(0)− Yi0(0)|Wi = 0]

(13)

The most common method of estimating τ from Equation (13) is via a regression specification which
includes unit and time fixed effects, along with a treatment indicator for if unit i = 1, ..., N is treated in
period t = 1, ..., T :

Yit = γi + δt + τWit + εit (14)

Equation (14) is a general specification which allows consistent and asymptotically normal estimation of τ
under the PTA, no-anticipation assumption, and independently sampled units (Roth et al., 2023). There-
fore, Equation (14) implicitly assumes that parallel trends hold conditional on unit and time fixed effects.
One of the advantages of this approach is that it allows for the identification of an average causal effect in
the presence of treatment effect heterogeneity stemming from time-invariant covariates and/or time variant
covariates which affect all units equally because unit and time fixed effects absorb each of these impacts,
respectively.

In the more common scenario, researchers should consider the “staggered” parallel trends assumption
(we borrow the notation in this section from Roth (2022)). There are t = 1, ..., T time periods and units can
be treated in any period after the first, t > 1, and they must remain treated for the duration of the panel.
Denote the first period where unit i receives treatment as Gi and let Di,t be an indicator for if unit i receives
treatment in period t – so Gi is just an index for the earliest period where Di,t = 1. Note that control units
(never treated) have Gi = ∞.

We must refine the potential outcomes for unit i in this case to allow for flexibility in treatment timing.
Define a vector of 0’s and 1’s corresponding to the potential outcomes of being untreated or treated in any
given period as 0s and 1s, which are of some flexible length s. If unit i is first treated in some period Gi = g,
then their potential outcome in period t is what their outcome would be from not having received treatment
in period g − 1 followed by receiving treatment in every period from g to t (T − g − 1): Yi,t(0g−1,1T−g−1).
Conversely, their potential outcome from being never-treated just uses all 0’s for the panel duration: Yi,t(0T ).
Since units that are treated remain treated, we can simplify the notation a bit:

� Denote the potential outcomes for all units first treated in period g as: Yit(g)

� Denote never-treated units as: Yit(∞)

The Staggered PTA (SPTA) states that the average outcomes for all treated groups would have evolved
in parallel between any two time periods t and t′ in the absence of treatment:

SPTA: E[Yi,t(∞)− Yi,t′(∞)|Gi = g] = E[Yi,t(∞)− Yi,t′(∞)|Gi = g′],

∀t ̸= t′, g ̸= g′ (15)
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Where the LHS above represents the change in outcomes for the group treated in period g between any two
periods t and t′ had they never been treated, and the RHS represents the change in outcomes for all other
groups (i.e. those treated in any other period and those never treated) between any two time periods had
they not been treated.

This is a restrictive assumption which is unlikely to hold in practice. So Sun and Abraham (2021) and
Callaway and Sant’Anna (2021) relax the SPTA a bit in two ways. They are able to derive estimators which
require only that:

1. Trends must be parallel between some period t and the last period before treatment g − 1 (denoted
gmin).

2. Trends must be parallel between groups that are eventually treated – i.e. trends don’t need to be
parallel between eventually treated and never-treated units.

Their adjusted SPTA is the following:

SPTAadj : E[Yi,t(∞)− Yi,t′(∞)|Gi = g] = E[Yi,t(∞)− Yi,t′(∞)|Gi = g′],

∀t ̸= t′, g ̸= g′; t, t′ ≥ gmin (16)

Note that SPTAadj is largely the same, only it specifies that this is only for periods after gmin and now g′

no longer includes never-treated units where g′ = ∞.

Now we may estimate τ under SPTAadj by modifying Equation (14) so that we interact the indicator for
(Treat × Post), Wit, with another indicator for relative treatment time: 1[Rit]. Here, Wit acts as normal:
it equals 1 if the unit is treated in period t. And now we add 1[Rit] = T − gi + 1 = r so that it equals 1 in
the first period after treatment, 2 in the next, etc:

Yit = γi + δt +

T∗∑
r ̸=0

τWit · 1[Rit = r] + εit (17)

What 1[Rit] means is that if, say, Rit = 2 (i.e. we are in the second treatment period for unit i), then the
indicator equals 1. So we are estimating τ separately for every relative time period after treatment (i.e.
we are running many different regressions, 1 for each relative time period). Under the SPTAadj (and no
anticipation/independent sampling), this version of TWFE will produce consistent estimates of τ . However,
Sun and Abraham (2021) show that if there is heterogeneity in effects which varies by adoption timing (a
problem brought up earlier), the estimates produced by the above equation will be hard to interpret because
of “cross-contamination” and “negative weighting.”

Callaway and Sant’Anna (2021) propose an estimator which tries to overcome this issue. They look at
(1) the change in outcomes for treated units from a “base year” – usually period tbase = gi − 1, the period
right before initial treatment – to year t, and compare to (2) the change in outcomes over the same period
for never-treated and not-yet-treated individuals. They estimate treatment effects separately for every com-
bination of (1) treatment timing and (2) relative time after treatment.

Note that there is another type of estimator which tries to address this issue implemented by Borusyak
et al. (2024). Their approach is to fit a TWFE regression on all not-yet-treated units, and impute the
predicted outcomes of not-yet-treated units in period t as the counterfactual for treated units in period t.
This approach yields consistent estimates of τ under the stronger version of the SPTA (i.e. PTA must hold
for all time periods and units). This approach has the advantage of being more efficient than Callaway and
Sant’Anna (2021) – especially if there is anticipation, but is more prone to bias in the event of diverging
trends (e.g. if group-specific linear trends are present) or if there is serial correlation in the errors.

This brings us to our use-case: how the DID identification assumptions change when the treatment
effect is a function of unit-specific, time-invariant characteristics. Let us now allow the ATE as expressed in

9



Equation (14) to vary individually according to a set of time-invariant covariates, Xi:

Yit = γi + δt + τ(Xi)Wit + εit (18)

In the case of Equation (18), the impacts ofXi on Yit cannot be identified because they are obsorbed in γi.
However, Kattenberg et al. (2023) discuss that in principle, if one could identify subgroups, S, of individuals
where the treatment effect is nearly identical, τ(Xi) ≈ τ ∀i ∈ S, then one could use the estimators of
Borusyak et al. (2024) or Sun and Abraham (2021) to isolate this effect for members of that subgroup under
a localized staggered parallel trends assumption. This local SPTA is effectively just the Sun and Abraham
(2021) SPTAadj , with the only additional requirement being that it should hold for units within subgroup
S:

SPTAlocal : E[Yi,t(∞)− Yi,t′(∞)|Gi = g] = E[Yi,t(∞)− Yi,t′(∞)|Gi = g′],

∀t ̸= t′, g ̸= g′; t, t′ ≥ gmin; ∀i ∈ S (19)

1.3.2 Causal Forest with Fixed Effects

Kattenberg et al. (2023) outline a computationally tractable approach for using generalized random
forests to define subgroups in a DID setting. To build intuition, consider a simple case where there are only
two subgroups with unique treatment effects, g = {0, 1}, of size Ng. Denote their group-specific treatment
effect as τg. Of course, if we knew the subgroups ex-ante, then we could simply estimate τg by restricting
the sample to only those units in group g and estimating Equation (18) or by including an interaction term
in Equation (18) representing a group identifier along with the treatment indicator:

Yit = γi + δt + τgWit + εit; (20)

∀i ∈ g; ∀g ∈ {0, 1}

This is exactly the approach we conduct in the first sections of this paper with theoretical subgroups. At this
point, the GRF procedure is supposed to enter: we apply the non-parametric search procedure for subgroups
with similar treatment effects and derive a weighting kernel that allows a mapping of the conditional average
treatment effect function, τ(x). However, recall that the GRF estimates auxilliary regression trees for the
propensity score function, e(x) = E[Wit|x, γi, δi], and the conditional mean function, m(x) = E[Yit|x, γi, δi].
This poses a problem because the propensity scores will be clustered around 1 or 0 with the inclusion of time
and unit fixed effects, which violates the identifying assumptions of the GRF. Therefore, it is necessary to
modify Equation (20) with a double within-transformation (see Wooldridge (2010) for a detailed discussion)
such that τg is estimated in a numerically equivalent manner without the use of fixed effects. Specifically,
we first average within-unit (i.e. over time) and obtain the cross section equation:

Ȳi = τgW̄i + γi + ε̄i (20a)

Ȳi =
1

T

T∑
t=1

Yit; W̄i =
1

T

T∑
t=1

Wit

Subtracting (20a) from (20) yields the first transformation and eliminates unit-specific fixed effects:

Ÿit = δt + τgẄi + ε̈i (20b)

Ÿit = Yit − Ȳit; Ẅit = Wit − W̄it; ε̈it = εit − ε̄it

Next, we average within-year (i.e. over units) and create another transformed version of Equation (20)
which eliminates time fixed effects. Notice the critical detail in that we must use only observations in group
g for this transformation. That is, it must be done locally:

Ỹit = τgW̃it + εit (20c)

Ỹit = Ÿit −
1

Ng

∑
i∈Ng

Ÿit; W̃it = Ẅit −
1

Ng

∑
i∈Ng

Ẅit

10



Estimating (20c) with OLS yields a per-group estimate of the ATE which is equivalent to that obtained
by estimating Equation (20):

τ̂g =

∑
t

∑
i∈g W̃itỸit∑

t

∑
i∈g W̃

2
it

; g = 0, 1 (22)

Kattenberg et al. (2023) discuss that performing this double transformation manually (i.e. once before
any splitting is done) and subsequently training a GRF on the transformed variables will produce a biased
estimate of the conditional average treatment effect. This is because the second transformation must be
conducted locally among units with similar treatment effects in order for the asymptotic properties of the
GRF to continue to hold after recentering. Therefore, they propose recentering at individual nodes before
searching for a split. Their procedure may be summarized in Algorithm 1:

Algorithm 1 Causal Forest Fixed Effects (CFFE)

1: for Each causal tree b ∈ B do
2: Perform global recentering at root node, P . Seek the heterogeneity-maximizing split among covari-

ates xk ∈ X and thresholds c:

Ỹit = Ÿit −
1

N

∑
i∈N

Ÿit; W̃it = Ẅit −
1

N

∑
i∈N

Ẅit (1a)

max
xk,c

(τ̂C1
− τ̂C2

)2 (1b)

3: At the first child nodes, C1 and C2, perform local recentering on the raw outcome variable and
treatment indicator. Then seek the recursive heterogeneity-maximizing split:

Ỹit = Ÿit −
1

NCi

∑
i∈N

Ÿit; W̃it = Ẅit −
1

NCi

∑
i∈N

Ẅit ∀i ∈ {1, 2} (2a)

max
xk,c

(τ̂C1 − τ̂C2)
2 (2b)

4: Repeat (2a) and (2b) until stopping criteria are met.
5: end for
6: Produce the CATE function mapping by aggregating over trees:

τ̂(x) =

∑
t

∑
i αi(x)W̃iỹi∑

t

∑
i αi(x)W̃ 2

i

(3)

1.4 Results

At this stage, we are not yet able to conduct estimation via the CFFE approach. Therefore, we present
causal forest estimates from globally transformed data, with the major caveat that these estimates are
primarily illustrative at this stage as they are expected to be biased absent of local recentering.

1.4.1 Distributions of Average Treatment Effects

The aforementioned estimation procedure produces individualized treatment effect (ITE) estimates at
the school district × year level, which are equivalent to conditional average partial effects among the most
granular subroup (the individual school district × year). Figure 5 displays this distribution along with the
GRF-estimated average treatment effect.7 This exercise produces ATE estimates which are qualitatively

7Recall that the ATE will be the estimate of the subgroup ATE at the root node (that is, before any splits are made). So
this estimate simply comes from OLS on the double-differenced ỹi and W̃i. Since this numerically equivalent to the generalized
DID estimator, this value should be very similar to the ATE estimated from that regression.
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similar to those estimated by the GDD. For graduation rates, the causal forest estimates a slightly larger
ATE of 0.11 compared to the GDD estimate of 0.076 – 0.089 in Sample 1; for math scores, the causal forest
estimates an ATE of -0.02, nearly equivalent to that of the GDD estimate which ranged between -0.024 –
-0.029; and for ELA scores, the causal forest estimated an ATE of 0.09, slightly larger than the GDD which
estimated between 0.056 – 0.058. .

Figure 5 also presents evidence for heterogeneous treatment effects for all outcomes. While the majority
of district × year treatment effect estimates are imprecise, there are a fair number of ITEs statistically
different from zero, which we will explore in greater detail in the following subsections.

(a) Graduation Rates (b) Math Scores

(c) ELA Scores

Figure 5: Distributions of District × Year ITE Estimates
Notes: These figures are the distributions of individualized (district × year)-level treatment effects for each of the
three main outcomes from the causal forests. We estimate standard errors for each ITE, and shade darker those
districts with statistically significant (at the p = 0.1 level) ITE estimates. We also display the GRF-estimated ATE
which comes from the aggregation of doubly-robust scores. These are interpreted as average partial effects for a

given district × year. That is, each point represents E
[
∂τ(Xit)
∂Wit

]
=

Cov[Yit,Wit|Xit=x]
V ar[Wit|Xit=x]

, the predicted treatment

effect from increasing the charter share in district d in year t by 1 percentage point.

1.4.2 Treatment Effects within Theoretical Subgroups

In order to best understand the pattern of heterogeneity in charter school impacts, we first aggregate
the ITE estimates from Figure 5 into informative well-defined subgoups. Recall that the GRF estimation
procedure, at its’ core, produces a mapping of the heterogeneous treatment effect function. Therefore, we

12



can investigate the empirical importance of a theoretical subgroup by aggregating ITEs accordingly. Table
1 displays the results of this exercise. Here, we study the group average treatment effect (GATE), and
corresponding statistical significance, of urban vs. suburban vs. rural districts, districts with a greater share
of free or reduced-price lunch students, states with no cap laws on the maximum charter share, states with
transprent application processes for initial charter application and renwewal, states with performance-based
renewal contracts, and states with equitable funding for TPS vs. charter schools. A few interesting findings
include: suburban and rural districts are more likely to see improved graduation rates with expanded charter
schooling; states with performance-based contract renewal tend to see greater returns on graduation rates,
but negative returns to math scores; and states with equitable funding for charter schools tend to see greater
returns to both graduation rates and math scores.

Table 1: GATEs within Subgroups

GATE Estimates Proportion of N

Group Grad Rate Math ELA Grad Rate Share Math Share ELA Share

Urban
-0.112
(0.123)

0.014
(0.052)

-0.056
(0.049) 0.060 0.057 0.057

Suburban
0.058**
(0.029)

-0.011
(0.077)

-0.068
(0.068) 0.226 0.269 0.269

Rural
0.077*
(0.04)

-0.095
(0.122)

-0.179
(0.163) 0.529 0.462 0.462

Percent Free Lunch > 30%
0.037
(0.041)

-0.015
(0.063)

-0.048
(0.048) 0.400 0.771 0.771

No Caps on CS Growth
0.003
(0.033)

0.213
(0.149)

-0.279
(0.223) 0.280 0.290 0.290

Trans. CS Startup Policies
0.037
(0.029)

0.207**
(0.103)

-0.161**
(0.079) 0.366 0.296 0.296

Performance-Based Contracts
0.053**
(0.025)

-0.147***
(0.055)

-0.038
(0.052) 0.424 0.310 0.310

Equitable Funding
0.063***
(0.02)

0.303**
(0.138)

-0.258
(0.185) 0.417 0.388 0.388

1.4.3 Covariate Profiles of Positively-Impacted vs. Negatively-Impacted Districts

The next step in the investigation examines the covariate profile of districts with significantly positive
impacts contrasted with the covariate profile of those districts with significantly negative impacts. Tables
2 – 4 display the differences across these district profiles. Columns (1) and (2) show the covariate averages
for districts with positive or negative treatment effects, respectively, and column (3) shows the difference in
those covariate averages.

In Table 2, we see that districts with significantly positive ITE estimates for graduation rates tend to have
greater enrollment, more white and Hispanic students, fewer black students, fewer students on free/reduced
price lunch, more students in special ed, etc. Table 3 displays group averages for positive vs. negative math
score districts. Districts with significantly positive impacts tend to have more Hispanic students, spend
less at baseline per-student, have higher student-teacher ratios, have lower teacher salaries at baseline, have
fewer magnet schools, performed worse at baseline, etc. Table 4 paints a somewhat similar picture for ELA
scores: positively impacted districts spent less per-student at baseline, performed worse at baseline, had
lower teacher salaries, etc. Distilling these results seems to suggest that test scores are more likely to be
improved in districts where there is more room for improvement. That is, lower income districts, districts
with higher student-teacher ratios, districts without many magnet schools, and districts performing worse
at baseline tend to benefit more from charter school expansion.
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Table 2: Comparing Covariate Means: Graduation Rates

Covariate
Significantly
Positive

Significantly
Negative

Difference
(Positive - Negative)

Log of Enrollment 7.23 6.98 0.26**
White (%) 0.82 0.48 0.35***
Black (%) 0.05 0.39 -0.34***
Hispanic (%) 0.09 0.05 0.04***
Free/Reduced Lunch (%) 0.25 0.48 -0.23***
Special Ed (%) 0.26 0.13 0.13***
Baseline Performance 0.83 0.57 0.26***
Urban 0.07 0.07 0
Suburb 0.22 0.14 0.08***
Town 0.22 0.17 0.06*
Rural 0.48 0.62 -0.14***
Magnet Schools (%) 0.18 0.01 0.17
City Population (standardized) 0.00 0.00 0
University in City -0.01 0.01 -0.01**
Per Pupil Revenue 11411.08 8940.67 2470.41***
Student-Teacher Ratio 14.20 14.93 -0.73***
Teacher Salary 81975.53 65372.43 16603.09***
TPS-Charter Spending (% diff) 0.03 0.01 0.02***
Total Spending (per-pupil) 11480.57 9178.68 2301.89***
Equitable Funding 6.21 5.06 1.15***
No Caps on CS Growth 8.26 9.12 -0.86***
Performance-Based Contracts 8.31 9.75 -1.44***
Transparent Charter Startup Policies 7.98 10.16 -2.18***
Clear Charter Renewal Policies 10.54 11.91 -1.37***
Exempt from State/District Regs 7.51 8.04 -0.53***

Number of Observations 438.00 277.00 715

1.4.4 Variable Importance Factors and their Linear Relationship with Treatment Effects

The covariate profiles of (significantly) positively impacted vs. negatively impacted districts is an im-
portant first-step in the causal forest analysis of heterogeneity. With it, we have a profile for the “average”
district that stands to benefit or receive harm from charter expansion. However, the covariate profile fails to
answer exactly which covariates are driving the heterogeneity, and if the “direction” of the effect is linear,
interactive, or other. For the next step in the analysis of heterogeneity, it is useful to look within the training
procedure of the GRF for the covariates which proved to be the most informative when creating subgroups
and, therefore, mapping the CATE function. Examining the share of trees which split along each covariate,
weighted by the depth of the split itself (such that earlier splits are weighted more heavily) provides a rough
approximation of which covariates influence the gradient of the CATE function. This measure is referred
to in Wager and Athey (2018) as the “Variable Importance Factor,” and we display these results in Figure
6.8 We also explore these “important” covariates’ linear relationship with the treatment effect estimate in
Tables 5 – 7. This is what Athey et al. (2019) refer to as the “Best Linear Projection” of the CATE function.
To create this, we simply regress the vector of covariates, Xit, on the ITE prediction itself. This allows
us to see the linear relationship between covariates and the treatment effect. We consider only the top 7
covariates according to VIF.

We find a similar set of covariates drive heterogeneity for all outcomes. Baseline performance tends to
be a strong predictor for math and ELA scores, but is by far the strongest predictor of graduation rates. We

8The formula for variable importance for covariate xk is: V IF (xk) =
∑

j
1
j2

[∑
trees ## depth-j splits on xk∑
trees # total depth-j splits

]
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Table 3: Comparing Covariate Means: Math

Covariate
Significantly
Positive

Significantly
Negative

Difference
(Positive - Negative)

Log of Enrollment 7.29 7.26 0.03
White (%) 0.74 0.78 -0.04***
Black (%) 0.07 0.06 0**
Hispanic (%) 0.12 0.09 0.03***
Free/Reduced Lunch (%) 0.45 0.42 0.04***
Special Ed (%) 0.14 0.15 -0.01***
Baseline Performance 0.28 0.40 -0.12***
Urban 0.03 0.04 0
Suburb 0.29 0.31 -0.02*
Town 0.17 0.16 0.02***
Rural 0.50 0.50 0
Magnet Schools (%) 0.09 0.34 -0.25***
City Population (standardized) 0.00 0.00 0
University in City 0.00 0.00 0***
Per Pupil Revenue 13857.58 14541.93 -684.35***
Student-Teacher Ratio 14.77 14.23 0.54***
Teacher Salary 95478.39 96551.46 -1073.08***
TPS-Charter Spending (% diff) 0.01 0.00 0.01***
Total Spending (per-pupil) 13697.81 14348.39 -650.59***
Equitable Funding 5.54 5.44 0.1*
No Caps on CS Growth 8.59 8.44 0.15***
Performance-Based Contracts 8.44 8.55 -0.11**
Transparent Charter Startup Policies 8.39 8.68 -0.29***
Clear Charter Renewal Policies 10.51 10.37 0.13***
Exempt from State/District Regs 7.21 6.93 0.28***

Number of Observations 6002.00 7786.00 13788

also find that the baseline enrollment level consistently appears in the top 3 predictors for each outcome. For
test scores, the number of magnet schools in a district, as well as the share of white vs. black vs. Hispanic
students tend to be important predictors. This information on relative importance combined with the covari-
ate profiles in Tables 2 – 4 help us understand the nature of the heterogeneity. For graduation rates: higher
levels of prior enrollment, higher levels of prior performance, a larger share of special ed students, fewer
black students, and more white students are the main drivers of positive treatment effects. For math and
ELA scores, fewer white students and more Hispanic students, fewer magnet schools, and lower performance
at baseline are the drivers of positive impacts. Notice that the log of prior enrollment is always a strong
predictor of treatment effects according to VIF, but does not differ meaningfully across positive vs. negative
districts in either math or ELA scores. To understand why this may occur, recall that VIF is calculated as
the depth-weighted share of the number of trees that split along a given covariate. Thus, if a covariate is
used across many trees as an initial splitting variable, it is therefore necessarily informative as an interactor
with other covariates. This is a non-linearity which is difficult to see from simply examining covariate means.

The BLP analysis investigates if there are any approximately linear relationships between important
covariates and treatment effects. Above, we mentioned that important covariates may be important non-
linearly or interactively with other covariates. In these cases, we cannot answer if “more of x is usually
better/worse for τ(x),” because the CATE function is of high dimensionality and non-convexity. But in
some cases a somewhat linear relationship may exist, and the BLP allows us to explore that possibility.
In Tables 5 – 7, we find little evidence for linear relationships. Only Baseline Performance and Baseline
Enrollment have statistically significant positive linear relationships with the treatment effect predictions,
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(a) Graduation Rates (b) Math Scores

(c) ELA Scores

Figure 6: VIF Scores
Notes: These figures display variable importance factors (VIFs), which amount to the share of trees which split
along a given covariate, weighted by the depth at which the split occured.

16



Table 4: Comparing Covariate Means: ELA

Covariate
Significantly
Positive

Significantly
Negative

Difference
(Positive - Negative)

Log of Enrollment 7.30 7.32 -0.02
White (%) 0.77 0.74 0.03***
Black (%) 0.06 0.06 0
Hispanic (%) 0.10 0.12 -0.02***
Free/Reduced Lunch (%) 0.45 0.42 0.03***
Special Ed (%) 0.15 0.15 -0.01***
Baseline Performance 0.31 0.42 -0.11***
Urban 0.03 0.06 -0.03***
Suburb 0.27 0.35 -0.09***
Town 0.18 0.14 0.04***
Rural 0.52 0.45 0.07***
Magnet Schools (%) 0.07 0.29 -0.22***
City Population (standardized) 0.00 0.01 -0.01***
University in City 0.00 -0.01 0.01***
Per Pupil Revenue 13411.55 15221.81 -1810.26***
Student-Teacher Ratio 14.88 14.23 0.66***
Teacher Salary 92433.94 100392.11 -7958.17***
TPS-Charter Spending (% diff) 0.01 0.01 0
Total Spending (per-pupil) 13194.43 15038.02 -1843.59***
Equitable Funding 5.41 5.57 -0.16***
No Caps on CS Growth 8.55 8.54 0.02
Performance-Based Contracts 8.79 8.43 0.35***
Transparent Charter Startup Policies 8.39 8.60 -0.21***
Clear Charter Renewal Policies 10.60 10.45 0.15***
Exempt from State/District Regs 7.33 7.01 0.32***

Number of Observations 6454.00 7172.00 13626

and only for the graduation rate outcome.

Table 5: Best Linear Projection: Graduation Rates

Term Estimate Std. Error t-stat p-value

(Intercept) -1.847** 0.721 -2.563 0.010
Baseline Performance 0.932** 0.380 2.453 0.014
Log of Enrollment 0.105** 0.047 2.247 0.025
Special Ed (%) 4.19 3.087 1.358 0.175
Black (%) -0.898 0.667 -1.347 0.178
White (%) -0.178 0.384 -0.463 0.643
TPS-Charter Spending (% diff) -0.033 0.282 -0.116 0.908
Free/Reduced Lunch (%) 0.296 0.306 0.966 0.334
Hispanic (%) 0.157 0.423 0.371 0.711
University in City -0.53* 0.317 -1.673 0.094
Exempt from State/District Regs -0.019 0.034 -0.561 0.575
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Table 6: Best Linear Projection: Math Scores

Term Estimate Std. Error t-stat p-value

(Intercept) 1.389 0.911 1.525 0.127
White (%) -0.186 0.485 -0.384 0.701
Black (%) 0.097 0.568 0.170 0.865
Log of Enrollment -0.115* 0.065 -1.775 0.076
Magnet Schools (%) 0.007 0.005 1.433 0.152
Hispanic (%) 0.082 0.450 0.182 0.856
TPS-Charter Spending (% diff) 0.211 0.193 1.093 0.274
Baseline Performance 0.079 0.084 0.939 0.348
Free/Reduced Lunch (%) 0.024 0.428 0.056 0.955
City Population (standardized) 0.177* 0.096 1.843 0.065
Per Pupil Revenue 0 0.000 -1.396 0.163

Table 7: Best Linear Projection: ELA Scores

Term Estimate Std. Error t-stat p-value

(Intercept) 0.969** 0.395 2.450 0.014
Magnet Schools (%) 0.004 0.007 0.630 0.528
White (%) -0.58** 0.229 -2.532 0.011
Log of Enrollment -0.008 0.032 -0.247 0.805
Baseline Performance -0.017 0.047 -0.359 0.720
Black (%) -0.576** 0.246 -2.342 0.019
Per Pupil Revenue 0 0.000 -1.112 0.266
Special Ed (%) -2.143 1.328 -1.614 0.107
Total Spending (per-pupil) 0 0.000 0.627 0.530
Hispanic (%) -0.745*** 0.237 -3.148 0.002
TPS-Charter Spending (% diff) 0.301*** 0.109 2.772 0.006

1.4.5 ATEs within States and Dose-Responses

Earlier in the paper, we presented estimates of state-level treatment effects. Table 8 presents the same
results as estimated by the causal forest. The causal forest estimates, from what we can tell, are qualitatively
quite similar to those produced from interactions in the GDD.

Another measure we presented earlier in the paper was a dose-response: how does the ATE vary by
the prior level of treatment? There are two relevant aspects to the dose-response function with continuous
treatment:

� The average causal response at different starting doses: E[Y (d′)− Y (d)|Xit]

� The level treatment effect function: E[Y (d)− Y (0)|Xit]

We can approximately map the average causal response function by grouping units treated in a given period t
according to their 1-period lagged dose (i.e. group by Y (d)t−1). We group districts by ascending thresholds
of this value, then compute GATEs within thresholds, effectively estimating E[Y (d′)t − Y (d)t−1|Xi,t−1].
Figure 7 plots these results. Like with the GDD, the causal forest estimates do not provide strong evidence
for diminishing returns (or any consistent relationship between prior charter intensity and the treatment ef-
fect) for math or ELA scores. Though, there is perhaps some evidence for diminishing returns to graduation
rates, as GATE estimates become increasingly negative beyond 10% charter share – though this is still a
relatively weak relationship.
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(a) Graduation Rates (b) Math Scores

(c) ELA Scores

Figure 7: Dose-Response Treatment Effects
Notes: These figures display average causal responses for increasing 5% thresholds of initial treatment magnitude.
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Table 8: GATEs within States

GATE Estimates Proportion of N

State Grad Rate Math ELA Grad Rate Share Math Share ELA Share

Alabama 0.149 NA NA 0.011 NA NA
Alaska -0.009 1.665 -0.073 0.005 0.002 0.002
Arizona 0.016 0.171 0.161 0.010 0.017 0.017
Arkansas 0.103 0.735 -0.207 0.027 0.030 0.030
California 0.031 0.078 0.041 0.040 0.069 0.069
Colorado -0.305 -0.284** -0.48*** 0.021 0.008 0.008
Connecticut 0.116 0.009 -0.073 0.013 0.017 0.017
Delaware -0.031 -0.183 -0.124 0.002 0.002 0.002
Florida 0.352*** -0.231 0.034 0.008 0.007 0.007
Georgia 0.261** 2.689*** -0.078 0.020 0.023 0.023
Idaho 0.035 -0.031 0.232 0.012 0.011 0.011
Illinois 0.266** -0.172 -0.267 0.047 0.082 0.082
Indiana 0.129 -0.234* -0.006 0.034 0.039 0.039
Kansas -0.072 -0.359 -0.168 0.033 0.028 0.028
Kentucky -0.145 -0.653 -0.464 0.017 0.022 0.022
Louisiana -0.309*** -0.056 0.027 0.008 0.009 0.009
Maine -0.024 NA NA 0.012 NA NA
Massachusetts 0.024 -0.051 0.111 0.026 0.028 0.028
Michigan -0.124 -0.145 0.018 0.060 0.065 0.065
Minnesota -0.022 -0.29 -0.153 0.032 0.040 0.040
Mississippi 0.083 -0.235*** 0.044 0.012 0.016 0.016
Montana 0.164 0.192 0.304 0.008 0.010 0.010
Nebraska 0.559 -0.013 0.589 0.026 0.018 0.018
Nevada -0.236* NA NA 0.002 NA NA
New Hampshire 0.047 -0.031 0.039 0.007 0.011 0.011
New Jersey 0.123*** 0.598 -1.228 0.021 0.049 0.049
New Mexico -0.151 0.106 -0.245* 0.010 0.007 0.007
New York 0.089 -0.026 -0.063 0.070 0.042 0.042
North Carolina 0.075 -0.176* 0.074 0.012 0.015 0.015
North Dakota 0.13 -1.178 0.46 0.016 0.007 0.007
Ohio 0.03 0.081 -0.046 0.072 0.063 0.063
Oregon -0.064 -0.159 -0.035 0.020 0.015 0.015
Pennsylvania -0.042 -0.067 -0.419** 0.055 0.065 0.065
South Carolina -0.09 -0.107 -0.103* 0.008 0.011 0.011
South Dakota 0.632 0.141 -0.295 0.017 0.012 0.012
Texas 0.13*** -0.137 -0.042 0.111 0.048 0.048
Utah 0.077 -0.086 0.236 0.004 0.004 0.004
Vermont -0.145 NA NA 0.004 NA NA
Virginia -0.058 NA NA 0.015 NA NA
Washington 0.173** NA NA 0.025 NA NA
West Virginia 1.86 -0.402 -0.9 0.006 0.005 0.005
Wisconsin 0.085* -0.121 0.026 0.041 0.051 0.051
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A Appendix A: Additional Figures

(a) Graduation Rates (b) Math Scores

(c) ELA Scores

Figure 8: Distributions of District-Level ITE Estimates
Notes: These figures are the distributions of individualized treatment effects aggregated to the school district
level for each of the three main outcomes from the causal forests. We estimate standard errors for each ITE, and
shade darker those districts with statistically significant (at the p = 0.1 level) ITE estimates. We also display
the GRF-estimated ATE which comes from the aggregation of doubly-robust scores. These estimates are similar
to the district × year estimates, but are aggregated over years to abstract from the time element and obtain a
district-level estimate that is comparable to the district-level estimates in the first part of the paper. These are
interpreted as average partial effects for a given district. That is, each point represents the predicted treatment
effect from increasing the charter share in district d by 1 percentage point.

B Appendix B: Additional Tables
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Table 9: Comparing Covariate Means: Graduation Rates

Covariate
All

Positive
All

Negative
Difference

(Positive - Negative)

Log of Enrollment 7.42 7.49 -0.07***
White (%) 0.79 0.82 -0.03***
Black (%) 0.07 0.08 -0.01***
Hispanic (%) 0.09 0.07 0.03***
Free/Reduced Lunch (%) 0.28 0.26 0.03***
Special Ed (%) 0.13 0.12 0.01***
Baseline Performance 0.81 0.80 0.01***
Urban 0.06 0.06 0
Suburb 0.22 0.23 -0.01**
Town 0.19 0.18 0.01***
Rural 0.53 0.53 0
Magnet Schools (%) 0.05 0.02 0.03***
City Population (standardized) 0.00 0.00 0*
University in City 0.00 0.00 0***
Per Pupil Revenue 9504.96 9113.57 391.38***
Student-Teacher Ratio 14.99 15.15 -0.16***
Teacher Salary 72519.19 71398.15 1121.04***
TPS-Charter Spending (% diff) 0.02 0.02 0
Total Spending (per-pupil) 9578.89 9176.46 402.43***
Equitable Funding 5.80 5.26 0.54***
No Caps on CS Growth 8.87 8.97 -0.1***
Performance-Based Contracts 9.21 9.41 -0.2***
Transparent Charter Startup Policies 8.71 9.18 -0.47***
Clear Charter Renewal Policies 10.46 10.59 -0.12***
Exempt from State/District Regs 7.24 7.40 -0.16***

Number of Observations 90065.00 42809.00 132874
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Table 10: Comparing Covariate Means: Math

Covariate
Significantly
Positive

Significantly
Negative

Difference
(Positive - Negative)

Log of Enrollment 7.45 7.49 -0.04***
White (%) 0.70 0.71 -0.01***
Black (%) 0.08 0.08 0***
Hispanic (%) 0.14 0.13 0.01***
Free/Reduced Lunch (%) 0.48 0.48 0.01***
Special Ed (%) 0.14 0.14 0***
Baseline Performance 0.10 0.13 -0.04***
Urban 0.06 0.06 -0.01***
Suburb 0.27 0.28 0***
Town 0.19 0.19 0.01***
Rural 0.47 0.47 0***
Magnet Schools (%) 0.17 0.27 -0.1***
City Population (standardized) 0.00 0.00 0***
University in City 0.00 0.00 0***
Per Pupil Revenue 13340.23 13362.44 -22.21**
Student-Teacher Ratio 15.24 15.13 0.11***
Teacher Salary 94666.86 94338.90 327.97***
TPS-Charter Spending (% diff) 0.02 0.02 0.01***
Total Spending (per-pupil) 13213.70 13225.61 -11.91
Equitable Funding 5.63 5.60 0.02**
No Caps on CS Growth 8.84 8.80 0.04***
Performance-Based Contracts 8.62 8.66 -0.03***
Transparent Charter Startup Policies 8.39 8.44 -0.05***
Clear Charter Renewal Policies 10.41 10.45 -0.03***
Exempt from State/District Regs 7.26 7.21 0.04***

Number of Observations 229182.00 248330.00 477512
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Table 11: Comparing Covariate Means: ELA

Covariate
Significantly
Positive

Significantly
Negative

Difference
(Positive - Negative)

Log of Enrollment 7.47 7.48 -0.01**
White (%) 0.72 0.70 0.02***
Black (%) 0.08 0.08 0***
Hispanic (%) 0.13 0.14 -0.01***
Free/Reduced Lunch (%) 0.48 0.48 0**
Special Ed (%) 0.14 0.14 0***
Baseline Performance 0.12 0.12 0
Urban 0.06 0.07 -0.01***
Suburb 0.27 0.29 -0.02***
Town 0.20 0.18 0.02***
Rural 0.48 0.47 0.01***
Magnet Schools (%) 0.16 0.29 -0.13***
City Population (standardized) 0.00 0.00 0***
University in City 0.00 0.00 0***
Per Pupil Revenue 13096.46 13600.83 -504.36***
Student-Teacher Ratio 15.28 15.09 0.18***
Teacher Salary 93318.71 95645.00 -2326.29***
TPS-Charter Spending (% diff) 0.02 0.02 0.01***
Total Spending (per-pupil) 12971.90 13461.80 -489.9***
Equitable Funding 5.47 5.75 -0.28***
No Caps on CS Growth 8.83 8.82 0.01
Performance-Based Contracts 8.67 8.61 0.06***
Transparent Charter Startup Policies 8.32 8.50 -0.18***
Clear Charter Renewal Policies 10.40 10.47 -0.07***
Exempt from State/District Regs 7.26 7.21 0.05***

Number of Observations 235790.00 241722.00 477512
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